Hostname: page-component-546b4f848f-bvkm5 Total loading time: 0 Render date: 2023-06-02T19:51:26.050Z Has data issue: false Feature Flags: { "useRatesEcommerce": true } hasContentIssue false

Association between hyperhomocysteinaemia and the risk of all-cause and cause-specific mortality among adults in the USA

Published online by Cambridge University Press:  06 July 2022

Wenyan Zhao
Affiliation:
Center for General Practice Medicine, Department of General Practice Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, People’s Republic of China
Yan Lin
Affiliation:
Center for General Practice Medicine, Department of General Practice Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, People’s Republic of China
Huibo He
Affiliation:
Center for General Practice Medicine, Department of General Practice Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, People’s Republic of China
Honglei Ma
Affiliation:
Center for General Practice Medicine, Department of General Practice Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, People’s Republic of China
Wei Yang
Affiliation:
Center for General Practice Medicine, Department of General Practice Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, People’s Republic of China
Qian Hu
Affiliation:
Center for General Practice Medicine, Department of General Practice Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, People’s Republic of China
Xi Chen*
Affiliation:
Center for General Practice Medicine, Department of General Practice Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, People’s Republic of China
Faliang Gao*
Affiliation:
Center for Rehabilitation Medicine, Department of Neurosurgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, People’s Republic of China Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, People’s Republic of China
*
*Corresponding author: Dr F. Gao, email gaofaliang1985@126.com; X. Chen, email vipxichen2021@126.com
*Corresponding author: Dr F. Gao, email gaofaliang1985@126.com; X. Chen, email vipxichen2021@126.com

Abstract

Hyperhomocysteinaemia (HHcy) is associated with all-cause mortality in some disease states. However, the correlation between HHcy and the risk of mortality in the general population has rarely been researched. We aimed to evaluate the association between HHcy and all-cause and cause-specific mortality among adults in the USA. This study analysed data from the National Health and Nutrition Examination Survey database (1999–2002 survey cycle). A multivariable Cox regression model was built to evaluate the correlation between HHcy and all-cause and cause-specific mortality. Smooth curve fitting was used to analyse their dose-dependent relationship. A total of 8442 adults aged 18–70 years were included in this study. After a median follow-up period of 14·7 years, 1007 (11·9 %) deaths occurred including 197 CVD-related deaths, 255 cancer-related deaths and fifty-eight respiratory disease deaths. The participants with HHcy had a 93 % increased risk of all-cause mortality (hazard ratio (HR) 1·93; 95 % CI (1·48, 2·51)), 160 % increased risk of CVD mortality (HR 2·60; 95 % CI (1·52, 4·45)) and 82 % increased risk of cancer mortality (HR 1·82; 95 % CI (1·03, 3·21)) compared with those without HHcy. For unmeasured confounding, E-value analysis proved to be robust. In conclusion, HHcy was associated with high risk of all-cause and cause-specific (CVD, cancer) mortality among adults aged below 70 years.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

These authors contributed equally to this work and share correspondence.

References

Finkelstein, JD (1990) Methionine metabolism in mammals. J Nutr Biochem 1, 228237.CrossRefGoogle ScholarPubMed
Boushey, CJ, Beresford, SA, Omenn, GS, et al. (1995) A quantitative assessment of plasma homocysteine as a risk factor for vascular disease. Probable benefits of increasing folic acid intakes. JAMA 274, 10491057.CrossRefGoogle ScholarPubMed
Ueland, PM & Refsum, H (1989) Plasma homocysteine, a risk factor for vascular disease: plasma levels in health, disease, and drug therapy. J Lab Clin Med 114, 473501.Google ScholarPubMed
Mccully, KS (1996) Homocysteine and vascular disease. Nat Med 2, 386.CrossRefGoogle ScholarPubMed
Martí-Carvajal, AJ, Solà, I, Lathyris, D, et al. (2017) Homocysteine-lowering interventions for preventing cardiovascular events. Cochrane Database Syst Rev 8, Cd006612.Google ScholarPubMed
Perry, IJ, Refsum, H, Morris, RW, et al. (1995) Prospective study of serum total homocysteine concentration and risk of stroke in middle-aged British men. Lancet 346, 13951398.CrossRefGoogle ScholarPubMed
Graham, IM, Daly, LE, Refsum, HM, et al. (1997) Plasma homocysteine as a risk factor for vascular disease. European concerted action project. JAMA 277, 17751781.CrossRefGoogle ScholarPubMed
Hankey, GJ & Eikelboom, JW (1999) Homocysteine and vascular disease. Lancet 354, 407413.CrossRefGoogle ScholarPubMed
Homocysteine Studies Collaboration (2002) Homocysteine and risk of ischemic heart disease and stroke: a meta-analysis. JAMA 288, 20152022.CrossRefGoogle Scholar
Wu, X, Zhou, Q, Chen, Q, et al. (2020) Association of homocysteine level with risk of stroke: a dose-response meta-analysis of prospective cohort studies. Nutr Metab Cardiovasc Dis 30, 18611869.CrossRefGoogle ScholarPubMed
Zhong, F, Zhuang, L, Wang, Y, et al. (2017) Homocysteine levels and risk of essential hypertension: a meta-analysis of published epidemiological studies. Clin Exp Hypertens 39, 160167.CrossRefGoogle ScholarPubMed
Christine, CW, Auinger, P, Joslin, A, et al. (2018) Vitamin B12 and homocysteine levels predict different outcomes in early Parkinson’s disease. Mov Disord 33, 762770.CrossRefGoogle ScholarPubMed
Morris, MS (2003) Homocysteine and Alzheimer’s disease. Lancet Neurol 2, 425428.CrossRefGoogle ScholarPubMed
Huang, T, Ren, J, Huang, J, et al. (2013) Association of homocysteine with type 2 diabetes: a meta-analysis implementing Mendelian randomization approach. BMC Genomics 14, 867.CrossRefGoogle ScholarPubMed
Verhoef, P & de Groot, LC (2005) Dietary determinants of plasma homocysteine concentrations. Semin Vasc Med 5, 110123.CrossRefGoogle ScholarPubMed
Acevedo, M, Pearce, GL, Jacobsen, DW, et al. (2003) Serum homocysteine levels and mortality in outpatients with or without coronary artery disease: an observational study. Am J Med 114, 685688.CrossRefGoogle ScholarPubMed
Hoogeveen, EK, Kostense, PJ, Jakobs, C, et al. (2000) Hyperhomocysteinemia increases risk of death, especially in type 2 diabetes: 5-year follow-up of the Hoorn study. Circulation 101, 15061511.CrossRefGoogle ScholarPubMed
Buccianti, G, Baragetti, I, Bamonti, F, et al. (2004) Plasma homocysteine levels and cardiovascular mortality in patients with end-stage renal disease. J Nephrol 17, 405410.Google ScholarPubMed
Connolly, GM, Cunningham, R, McNamee, PT, et al. (2010) Elevated homocysteine is a predictor of all-cause mortality in a prospective cohort of renal transplant recipients. Nephron Clin Pract 114, c5c11.CrossRefGoogle Scholar
Wong, YY, Almeida, OP, McCaul, KA, et al. (2013) Homocysteine, frailty, and all-cause mortality in older men: the health in men study. J Gerontol A Biol Sci Med Sci 68, 590598.CrossRefGoogle ScholarPubMed
World Health Organization (2013) Global Health Risks: Mortality and Burden of Disease Attributable to Selected Major Risks. https://www.who.int/publications/i/item/9789241563871 (accessed January 2009).Google Scholar
Johnson, CL, Paulose-Ram, R, Ogden, CL, et al. (2013) National health and nutrition examination survey: analytic guidelines, 1999–2010. Vital Health Stat 2, 124.Google Scholar
Haneuse, S, VanderWeele, TJ & Arterburn, D (2019) Using the E-value to assess the potential effect of unmeasured confounding in observational studies. JAMA 321, 602603.CrossRefGoogle ScholarPubMed
Yang, Q, Zheng, J, Chen, W, et al. (2021) Association between preadmission metformin use and outcomes in intensive care unit patients with sepsis and type 2 diabetes: a cohort study. Front Med 8, 640785.CrossRefGoogle ScholarPubMed
Bostom, AG, Silbershatz, H, Rosenberg, IH, et al. (1999) Nonfasting plasma total homocysteine levels and all-cause and cardiovascular disease mortality in elderly Framingham men and women. Arch Intern Med 159, 10771080.CrossRefGoogle ScholarPubMed
Kark, JD, Selhub, J, Adler, B, et al. (1999) Nonfasting plasma total homocysteine level and mortality in middle-aged and elderly men and women in Jerusalem. Ann Intern Med 131, 321330.CrossRefGoogle ScholarPubMed
Toyomasu, K, Adachi, H, Enomoto, M, et al. (2021) Impact of combined elevations of homocysteine and asymmetric dimethylarginine on all-cause death – the Tanushimaru study. J Cardiol 78, 129135.CrossRefGoogle ScholarPubMed
Mendonça, N, Jagger, C, Granic, A, et al. (2018) Elevated total homocysteine in all participants and plasma vitamin B12 concentrations in women are associated with all-cause and cardiovascular mortality in the very old: the Newcastle 85+ study. J Gerontol A Biol Sci Med Sci 73, 12581264.CrossRefGoogle ScholarPubMed
Zhang, Z, Xiao, S, Yang, C, et al. (2019) Association of elevated plasma homocysteine level with restenosis and clinical outcomes after percutaneous coronary interventions: a systemic review and meta-analysis. Cardiovasc Drugs Ther 33, 353361.CrossRefGoogle ScholarPubMed
de Bree, A, Verschuren, WM, Blom, HJ, et al. (2003) Coronary heart disease mortality, plasma homocysteine, and B-vitamins: a prospective study. Atherosclerosis 166, 369377.CrossRefGoogle ScholarPubMed
Welch, GN & Loscalzo, J (1998) Homocysteine and atherothrombosis. N Engl J Med 338, 10421050.CrossRefGoogle ScholarPubMed
Kanani, PM, Sinkey, CA, Browning, RL, et al. (1999) Role of oxidant stress in endothelial dysfunction produced by experimental hyperhomocyst(e)inemia in humans. Circulation 100, 11611168.CrossRefGoogle ScholarPubMed
Tawakol, A, Omland, T, Gerhard, M, et al. (1997) Hyperhomocyst(e)inemia is associated with impaired endothelium-dependent vasodilation in humans. Circulation 95, 11191121.CrossRefGoogle ScholarPubMed
Al-Obaidi, MK, Philippou, H, Stubbs, PJ, et al. (2000) Relationships between homocysteine, factor VIIa, and thrombin generation in acute coronary syndromes. Circulation 101, 372377.CrossRefGoogle ScholarPubMed
Bellamy, MF, McDowell, IF, Ramsey, MW, et al. (1998) Hyperhomocysteinemia after an oral methionine load acutely impairs endothelial function in healthy adults. Circulation 98, 18481852.CrossRefGoogle ScholarPubMed
Chambers, JC, McGregor, A, Jean-Marie, J, et al. (1999) Demonstration of rapid onset vascular endothelial dysfunction after hyperhomocysteinemia: an effect reversible with vitamin C therapy. Circulation 99, 11561160.CrossRefGoogle ScholarPubMed
Harker, LA, Slichter, SJ, Scott, CR, et al. (1974) Homocystinemia. Vascular injury and arterial thrombosis. N Engl J Med 291, 537543.CrossRefGoogle ScholarPubMed
Selhub, J, Jacques, PF, Wilson, PW, et al. (1993) Vitamin status and intake as primary determinants of homocysteinemia in an elderly population. JAMA 270, 26932698.CrossRefGoogle Scholar
Kharbanda, KK (2009) Alcoholic liver disease and methionine metabolism. Semin Liver Dis 29, 155165.CrossRefGoogle ScholarPubMed
Kenyon, SH, Nicolaou, A & Gibbons, WA (1998) The effect of ethanol and its metabolites upon methionine synthase activity in vitro . Alcohol 15, 305309.CrossRefGoogle ScholarPubMed
Azarpazhooh, MR, Andalibi, MSS, Hackam, DG, et al. (2020) Interaction of smoking, hyperhomocysteinemia, and metabolic syndrome with carotid atherosclerosis: a cross-sectional study in 972 non-diabetic patients. Nutrition 79–80, 110874.CrossRefGoogle ScholarPubMed
Han, L, Liu, Y, Wang, C, et al. (2017) Determinants of hyperhomocysteinemia in healthy and hypertensive subjects: a population-based study and systematic review. Clin Nutr 36, 12151230.CrossRefGoogle ScholarPubMed
Zhao, W, Gao, F, Lv, L, et al. (2022) The interaction of hypertension and homocysteine increases the risk of mortality among middle-aged and older population in the United States. J Hypertens 40, 254263.CrossRefGoogle ScholarPubMed
Nygård, O, Vollset, SE, Refsum, H, et al. (1995) Total plasma homocysteine and cardiovascular risk profile. The Hordaland homocysteine study. JAMA 274, 15261533.CrossRefGoogle ScholarPubMed
Lim, U & Cassano, PA (2002) Homocysteine and blood pressure in the Third National Health and Nutrition Examination Survey, 1988–1994. Am J Epidemiol 156, 11051113.CrossRefGoogle ScholarPubMed
Symons, JD, Mullick, AE, Ensunsa, JL, et al. (2002) Hyperhomocysteinemia evoked by folate depletion: effects on coronary and carotid arterial function. Arterioscler Thromb Vasc Biol 22, 772780.CrossRefGoogle ScholarPubMed
Vermeulen, EG, Stehouwer, CD, Twisk, JW, et al. (2000) Effect of homocysteine-lowering treatment with folic acid plus vitamin B6 on progression of subclinical atherosclerosis: a randomised, placebo-controlled trial. Lancet 355, 517522.CrossRefGoogle ScholarPubMed
Voutilainen, S, Rissanen, TH, Virtanen, J, et al. (2001) Low dietary folate intake is associated with an excess incidence of acute coronary events: the Kuopio ischemic heart disease risk factor study. Circulation 103, 26742680.CrossRefGoogle ScholarPubMed
McNulty, H, Pentieva, K, Hoey, L, et al. (2008) Homocysteine, B-vitamins and CVD. Proc Nutr Soc 67, 232237.CrossRefGoogle ScholarPubMed
Bertoia, ML, Pai, JK, Cooke, JP, et al. (2014) Plasma homocysteine, dietary B vitamins, betaine, and choline and risk of peripheral artery disease. Atherosclerosis 235, 94101.CrossRefGoogle ScholarPubMed
Ubbink, JB, Vermaak, WJ, van der Merwe, A, et al. (1993) Vitamin B12, vitamin B6, and folate nutritional status in men with hyperhomocysteinemia. Am J Clin Nutr 57, 4753.CrossRefGoogle ScholarPubMed
Jacques, PF, Selhub, J, Bostom, AG, et al. (1999) The effect of folic acid fortification on plasma folate and total homocysteine concentrations. N Engl J Med 340, 14491454.CrossRefGoogle ScholarPubMed
Clarke, R, Halsey, J, Lewington, S, et al. (2010) Effects of lowering homocysteine levels with B vitamins on cardiovascular disease, cancer, and cause-specific mortality: meta-analysis of 8 randomized trials involving 37 485 individuals. Arch Intern Med 170, 16221631.Google ScholarPubMed
Orkaby, AR, Driver, JA, Ho, YL, et al. (2020) Association of statin use with all-cause and cardiovascular mortality in us veterans 75 years and older. JAMA 324, 6878.CrossRefGoogle ScholarPubMed
Baigent, C, Keech, A, Kearney, PM, et al. (2005) Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet 366, 12671278.Google ScholarPubMed
Rea, F, Biffi, A, Ronco, R, et al. (2021) Cardiovascular outcomes and mortality associated with discontinuing statins in older patients receiving polypharmacy. JAMA Netw Open 4, e2113186.CrossRefGoogle ScholarPubMed
Savarese, G, Costanzo, P, Cleland, JG, et al. (2013) A meta-analysis reporting effects of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers in patients without heart failure. J Am Coll Cardiol 61, 131142.CrossRefGoogle ScholarPubMed
Cheng, J, Zhang, W, Zhang, X, et al. (2014) Effect of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers on all-cause mortality, cardiovascular deaths, and cardiovascular events in patients with diabetes mellitus: a meta-analysis. JAMA Intern Med 174, 773785.CrossRefGoogle ScholarPubMed
Sahebkar, A, Pirro, M, Reiner, Ž, et al. (2016) A systematic review and meta-analysis of controlled trials on the effects of statin and fibrate therapies on plasma homocysteine levels. Curr Med Chem 23, 44904503.CrossRefGoogle ScholarPubMed
Kang, A, Nigwekar, SU, Perkovic, V, et al. (2015) Interventions for lowering plasma homocysteine levels in kidney transplant recipients. Cochrane Database Syst Rev, 4, Cd007910.Google ScholarPubMed