Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-rn2sj Total loading time: 0.429 Render date: 2022-08-13T01:39:00.987Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Abdominal obesity and risk of CVD: a dose–response meta-analysis of thirty-one prospective studies

Published online by Cambridge University Press:  12 January 2021

Ran Xue
Affiliation:
Department of Precision Nutrition Innovation Center, Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
Qianwen Li
Affiliation:
Department of Precision Nutrition Innovation Center, Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
Yaping Geng
Affiliation:
Department of Precision Nutrition Innovation Center, Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
Hao Wang
Affiliation:
Department of Precision Nutrition Innovation Center, Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
Fudi Wang
Affiliation:
Department of Precision Nutrition Innovation Center, Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
Shenshen Zhang*
Affiliation:
Department of Precision Nutrition Innovation Center, Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
*
*Corresponding author: Shenshen Zhang, email zsslb2005@163.com

Abstract

This meta-analysis aimed to study the relationship between abdominal obesity and the risk of CVD by waist circumference (WC), waist:hip ratio (WHR) and waist:height ratio (WHtR). We systematically searched PubMed, Embase and Web of Science. Prospective studies that estimated cardiovascular events by WC, WHR and WHtR were included in this study. Pooled relative risks with 95 % CI were calculated using random effects models. A total of thirty-one studies were included in the meta-analysis, including 669 560 participants and 25 214 cases. Compared the highest with the lowest category of WC, WHR and WHtR, the summary risk ratios were 1·43 (95 % CI, 1·30, 1·56, P < 0·001), 1·43 (95 % CI, 1·33, 1·54, P < 0·001) and 1·57 (95 % CI, 1·37, 1·79, P < 0·001), respectively. The linear dose–response analysis revealed that the risk of CVD increased by 3·4 % for each 10 cm increase of WC, and by 3·5 and 6·0 % for each 0·1 unit increase of WHR and WHtR in women, respectively. In men, the risk of CVD increased by 4·0 % for each 10 cm increase of WC, and by 4·0 and 8·6 % for each 0·1 unit increase of WHR and WHtR, respectively. Collectively, abdominal obesity is associated with an increased risk of CVD. WC, WHR and WHtR are good indicators for the prediction of CVD.

Type
Full Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Roth, GA, Abate, D, Abate, KH, et al. (2018) Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392, 17361788.10.1016/S0140-6736(18)32203-7CrossRefGoogle Scholar
Ortega, FB, Lavie, CJ & Blair, SN (2016) Obesity and cardiovascular disease. Circ Res 118, 17521770.10.1161/CIRCRESAHA.115.306883CrossRefGoogle ScholarPubMed
Afshin, A, Forouzanfar, MH, Reitsma, MB, et al. (2017) Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med 377, 1327.Google ScholarPubMed
Romero-Corral, A, Montori, VM, Somers, VK, et al. (2006) Association of bodyweight with total mortality and with cardiovascular events in coronary artery disease: a systematic review of cohort studies. Lancet 368, 666678.10.1016/S0140-6736(06)69251-9CrossRefGoogle ScholarPubMed
Lavie, CJ, Milani, RV & Ventura, HO (2009) Obesity and cardiovascular disease: risk factor, paradox, and impact of weight loss. J Am Coll Cardiol 53, 19251932.10.1016/j.jacc.2008.12.068CrossRefGoogle ScholarPubMed
Coutinho, T, Goel, K, Correa de Sa, D, et al. (2011) Central obesity and survival in subjects with coronary artery disease: a systematic review of the literature and collaborative analysis with individual subject data. J Am Coll Cardiol 57, 18771886.10.1016/j.jacc.2010.11.058CrossRefGoogle ScholarPubMed
Balkau, B, Deanfield, JE, Despres, JP, et al. (2007) International Day for the Evaluation of Abdominal Obesity (IDEA): a study of waist circumference, cardiovascular disease, and diabetes mellitus in 168,000 primary care patients in 63 countries. Circulation 116, 19421951.10.1161/CIRCULATIONAHA.106.676379CrossRefGoogle ScholarPubMed
Radholm, K, Chalmers, J, Ohkuma, T, et al. (2018) Use of the waist-to-height ratio to predict cardiovascular risk in patients with diabetes: results from the ADVANCE-ON study. Diabetes Obes Metab 20, 19031910.10.1111/dom.13311CrossRefGoogle ScholarPubMed
Ashwell, M, Gunn, P & Gibson, S (2012) Waist-to-height ratio is a better screening tool than waist circumference and BMI for adult cardiometabolic risk factors: systematic review and meta-analysis. Obes Rev 13, 275286.10.1111/j.1467-789X.2011.00952.xCrossRefGoogle ScholarPubMed
Lee, CM, Huxley, RR, Wildman, RP, et al. (2008) Indices of abdominal obesity are better discriminators of cardiovascular risk factors than BMI: a meta-analysis. J Clin Epidemiol 61, 646653.10.1016/j.jclinepi.2007.08.012CrossRefGoogle ScholarPubMed
Savva, SC, Lamnisos, D & Kafatos, AG (2013) Predicting cardiometabolic risk: waist-to-height ratio or BMI. A meta-analysis. Diabetes Metab Syndr Obes 6, 403419.10.2147/DMSO.S34220CrossRefGoogle ScholarPubMed
Phillips, SG (1975) The community physician and atmospheric pollution. J Soc Occup Med 25, 139141.10.1093/occmed/25.4.139CrossRefGoogle ScholarPubMed
Hamling, J, Lee, P, Weitkunat, R, et al. (2008) Facilitating meta-analyses by deriving relative effect and precision estimates for alternative comparisons from a set of estimates presented by exposure level or disease category. Stat Med 27, 954970.10.1002/sim.3013CrossRefGoogle ScholarPubMed
Duval, S & Tweedie, R (2000) Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 56, 455463.10.1111/j.0006-341X.2000.00455.xCrossRefGoogle ScholarPubMed
Gelber, RP, Gaziano, JM, Orav, EJ, et al. (2008) Measures of obesity and cardiovascular risk among men and women. J Am Coll Cardiol 52, 605615.10.1016/j.jacc.2008.03.066CrossRefGoogle ScholarPubMed
Rexrode, KM, Carey, VJ, Hennekens, CH, et al. (1998) Abdominal adiposity and coronary heart disease in women. JAMA 280, 18431848.10.1001/jama.280.21.1843CrossRefGoogle ScholarPubMed
Lu, M, Ye, W, Adami, HO, et al. (2006) Prospective study of body size and risk for stroke amongst women below age 60. J Intern Med 260, 442450.10.1111/j.1365-2796.2006.01706.xCrossRefGoogle ScholarPubMed
Yang, L, Kuper, H & Weiderpass, E (2008) Anthropometric characteristics as predictors of coronary heart disease in women. J Intern Med 264, 3949.10.1111/j.1365-2796.2007.01907.xCrossRefGoogle ScholarPubMed
Zhang, X, Shu, XO, Gao, YT, et al. (2009) General and abdominal adiposity and risk of stroke in Chinese women. Stroke 40, 10981104.10.1161/STROKEAHA.108.539692CrossRefGoogle ScholarPubMed
Rimm, EB, Stampfer, MJ, Giovannucci, E, et al. (1995) Body size and fat distribution as predictors of coronary heart disease among middle-aged and older US men. Am J Epidemiol 141, 11171127.10.1093/oxfordjournals.aje.a117385CrossRefGoogle ScholarPubMed
Walker, SP, Rimm, EB, Ascherio, A, et al. (1996) Body size and fat distribution as predictors of stroke among US men. Am J Epidemiol 144, 11431150.10.1093/oxfordjournals.aje.a008892CrossRefGoogle ScholarPubMed
Rexrode, KM, Buring, JE & Manson, JE (2001) Abdominal and total adiposity and risk of coronary heart disease in men. Int J Obes Relat Metab Disord 25, 10471056.10.1038/sj.ijo.0801615CrossRefGoogle ScholarPubMed
Lakka, HM, Lakka, TA, Tuomilehto, J, et al. (2002) Abdominal obesity is associated with increased risk of acute coronary events in men. Eur Heart J 23, 706713.10.1053/euhj.2001.2889CrossRefGoogle ScholarPubMed
Aekplakorn, W, Pakpeankitwatana, V, Lee, CM, et al. (2007) Abdominal obesity and coronary heart disease in Thai men. Obesity (Silver Spring) 15, 10361042.10.1038/oby.2007.604CrossRefGoogle ScholarPubMed
Gruson, E, Montaye, M, Kee, F, et al. (2010) Anthropometric assessment of abdominal obesity and coronary heart disease risk in men: the PRIME study. Heart 96, 136140.10.1136/hrt.2009.171447CrossRefGoogle ScholarPubMed
Beer, C, Alfonso, H, Flicker, L, et al. (2011) Traditional risk factors for incident cardiovascular events have limited importance in later life compared with the health in men study cardiovascular risk score. Stroke 42, 952959.10.1161/STROKEAHA.110.603480CrossRefGoogle ScholarPubMed
Wannamethee, SG, Shaper, AG, Whincup, PH, et al. (2013) Adiposity, adipokines, and risk of incident stroke in older men. Stroke 44, 38.10.1161/STROKEAHA.112.670331CrossRefGoogle ScholarPubMed
Xu, J, Xu, T, Bu, X, et al. (2014) The predictive value of waist-to-height ratio for ischemic stroke in a population-based prospective cohort study among Mongolian men in China. PLOS ONE 9, e110245.10.1371/journal.pone.0110245CrossRefGoogle Scholar
Myint, PK, Kwok, CS, Luben, RN, et al. (2014) Body fat percentage, body mass index and waist-to-hip ratio as predictors of mortality and cardiovascular disease. Heart 100, 16131619.10.1136/heartjnl-2014-305816CrossRefGoogle ScholarPubMed
Abete, I, Arriola, L, Etxezarreta, N, et al. (2015) Association between different obesity measures and the risk of stroke in the EPIC Spanish cohort. Eur J Nutr 54, 365375.10.1007/s00394-014-0716-xCrossRefGoogle ScholarPubMed
Kizer, JR, Biggs, ML, Ix, JH, et al. (2011) Measures of adiposity and future risk of ischemic stroke and coronary heart disease in older men and women. Am J Epidemiol 173, 1025.10.1093/aje/kwq311CrossRefGoogle ScholarPubMed
Hotchkiss, JW, Davies, CA & Leyland, AH (2013) Adiposity has differing associations with incident coronary heart disease and mortality in the Scottish population: cross-sectional surveys with follow-up. Int J Obes (Lond) 37, 732739.10.1038/ijo.2012.102CrossRefGoogle ScholarPubMed
Folsom, AR, Stevens, J, Schreiner, PJ, et al. (1998) Body mass index, waist/hip ratio, and coronary heart disease incidence in African Americans and whites. Atherosclerosis Risk in Communities Study Investigators. Am J Epidemiol 148, 11871194.10.1093/oxfordjournals.aje.a009608CrossRefGoogle ScholarPubMed
Yatsuya, H, Folsom, AR, Yamagishi, K, et al. (2010) Race- and sex-specific associations of obesity measures with ischemic stroke incidence in the Atherosclerosis Risk in Communities (ARIC) study. Stroke 41, 417425.10.1161/STROKEAHA.109.566299CrossRefGoogle ScholarPubMed
Van Dis, I, Kromhout, D, Geleijnse, JM, et al. (2009) Body mass index and waist circumference predict both 10-year nonfatal and fatal cardiovascular disease risk: study conducted in 20,000 Dutch men and women aged 20–65 years. Eur J Cardiovasc Prev Rehabil 16, 729734.Google ScholarPubMed
Furukawa, Y, Kokubo, Y, Okamura, T, et al. (2010) The relationship between waist circumference and the risk of stroke and myocardial infarction in a Japanese urban cohort: the Suita study. Stroke 41, 550553.10.1161/STROKEAHA.109.569145CrossRefGoogle Scholar
Tatsumi, Y, Watanabe, M, Kokubo, Y, et al. (2013) Effect of age on the association between waist-to-height ratio and incidence of cardiovascular disease: the Suita study. J Epidemiol 23, 351359.10.2188/jea.JE20130004CrossRefGoogle ScholarPubMed
Hu, G, Tuomilehto, J, Silventoinen, K, et al. (2007) Body mass index, waist circumference, and waist-hip ratio on the risk of total and type-specific stroke. Arch Intern Med 167, 14201427.10.1001/archinte.167.13.1420CrossRefGoogle ScholarPubMed
Horvei, LD, Braekkan, SK, Mathiesen, EB, et al. (2014) Obesity measures and risk of venous thromboembolism and myocardial infarction. Eur J Epidemiol 29, 821830.10.1007/s10654-014-9950-zCrossRefGoogle ScholarPubMed
Severinsen, MT, Kristensen, SR, Johnsen, SP, et al. (2009) Anthropometry, body fat, and venous thromboembolism: a Danish follow-up study. Circulation 120, 18501857.10.1161/CIRCULATIONAHA.109.863241CrossRefGoogle ScholarPubMed
Sehested, TS, Hansen, TW, Olsen, MH, et al. (2010) Measures of overweight and obesity and risk of cardiovascular disease: a population-based study. Eur J Cardiovasc Prev Rehabil 17, 486490.10.1097/HJR.0b013e3283373f63CrossRefGoogle ScholarPubMed
Wang, Z & Hoy, WE (2004) Waist circumference, body mass index, hip circumference and waist-to-hip ratio as predictors of cardiovascular disease in Aboriginal people. Eur J Clin Nutr 58, 888893.10.1038/sj.ejcn.1601891CrossRefGoogle ScholarPubMed
Adegbija, O, Hoy, W & Wang, Z (2015) Prediction of cardiovascular disease risk using waist circumference among Aboriginals in a remote Australian community. BMC Public Health 15, 57.10.1186/s12889-015-1406-1CrossRefGoogle Scholar
Larsson, SC, Wolk, A, Hakansson, N, et al. (2017) Overall and abdominal obesity and incident aortic valve stenosis: two prospective cohort studies. Eur Heart J 38, 21922197.10.1093/eurheartj/ehx140CrossRefGoogle ScholarPubMed
Yusuf, S, Hawken, S, Ounpuu, S, et al. (2005) Obesity and the risk of myocardial infarction in 27,000 participants from 52 countries: a case–control study. Lancet 366, 16401649.10.1016/S0140-6736(05)67663-5CrossRefGoogle ScholarPubMed
Canoy, D, Boekholdt, SM, Wareham, N, et al. (2007) Body fat distribution and risk of coronary heart disease in men and women in the European Prospective Investigation Into Cancer and Nutrition in Norfolk cohort: a population-based prospective study. Circulation 116, 29332943.10.1161/CIRCULATIONAHA.106.673756CrossRefGoogle ScholarPubMed
Jayedi, A, Soltani, S, Zargar, MS, et al. (2020) Central fatness and risk of all cause mortality: systematic review and dose-response meta-analysis of 72 prospective cohort studies. BMJ 370, m3324.10.1136/bmj.m3324CrossRefGoogle ScholarPubMed
Browning, LM, Hsieh, SD & Ashwell, M (2010) A systematic review of waist-to-height ratio as a screening tool for the prediction of cardiovascular disease and diabetes: 0.5 could be a suitable global boundary value. Nutr Res Rev 23, 247269.10.1017/S0954422410000144CrossRefGoogle ScholarPubMed
Castanheira, M, Chor, D, Braga, JU, et al. (2018) Predicting cardiometabolic disturbances from waist-to-height ratio: findings from the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil) baseline. Public Health Nutr 21, 10281035.10.1017/S136898001700338XCrossRefGoogle ScholarPubMed
Gibson, S & Ashwell, M (2020) A simple cut-off for waist-to-height ratio (0.5) can act as an indicator for cardiometabolic risk: recent data from adults in the Health Survey for England. Br J Nutr 123, 681690.10.1017/S0007114519003301CrossRefGoogle ScholarPubMed
Garnett, SP, Baur, LA & Cowell, CT (2008) Waist-to-height ratio: a simple option for determining excess central adiposity in young people. Int J Obes (Lond) 32, 10281030.10.1038/ijo.2008.51CrossRefGoogle ScholarPubMed
Ashwell, M & Gibson, S (2014) A proposal for a primary screening tool: ‘Keep your waist circumference to less than half your height’. BMC Med 12, 207.10.1186/s12916-014-0207-1CrossRefGoogle ScholarPubMed
Smith, U (2015) Abdominal obesity: a marker of ectopic fat accumulation. J Clin Invest 125, 17901792.10.1172/JCI81507CrossRefGoogle ScholarPubMed
Shimabukuro, M (2009) Cardiac adiposity and global cardiometabolic risk: new concept and clinical implication. Circ J 73, 2734.10.1253/circj.CJ-08-1012CrossRefGoogle ScholarPubMed
Harwood, HJ Jr. (2012) The adipocyte as an endocrine organ in the regulation of metabolic homeostasis. Neuropharmacology 63, 5775.10.1016/j.neuropharm.2011.12.010CrossRefGoogle ScholarPubMed
Mahabadi, AA, Massaro, JM, Rosito, GA, et al. (2009) Association of pericardial fat, intrathoracic fat, and visceral abdominal fat with cardiovascular disease burden: the Framingham Heart Study. Eur Heart J 30, 850856.10.1093/eurheartj/ehn573CrossRefGoogle ScholarPubMed
Supplementary material: File

Xue et al. supplementary material

Table S1 and Figures S1-S6

Download Xue et al. supplementary material(File)
File 392 KB
5
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Abdominal obesity and risk of CVD: a dose–response meta-analysis of thirty-one prospective studies
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Abdominal obesity and risk of CVD: a dose–response meta-analysis of thirty-one prospective studies
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Abdominal obesity and risk of CVD: a dose–response meta-analysis of thirty-one prospective studies
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *