Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-28T12:13:46.814Z Has data issue: false hasContentIssue false

Does anthropogenic fragmentation selectively filter avian phylogenetic diversity in a critically endangered forest system?

Published online by Cambridge University Press:  16 November 2021

DAVID A. EHLERS SMITH
Affiliation:
Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa
SANDI WILLOWS-MUNRO
Affiliation:
Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa
YVETTE C. EHLERS SMITH
Affiliation:
Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa Ezemvelo KwaZulu-Natal Wildlife, Queen Elizabeth Park, Peter Brown Drive, Montrose, Pietermaritzburg, 3201, South Africa
COLLEEN T. DOWNS*
Affiliation:
Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa
*
*Author for correspondence; email: downs@ukzn.ac.za

Summary

Documenting phylogenetic diversity for conservation practice allows elucidation of ecosystem functioning and processes by highlighting the commonality and divergence of species’ functional traits within their evolutionary context. Conserving distinct evolutionary histories has intrinsic value, and the conservation of phylogenetically diverse communities is more likely to preserve distinct or relic evolutionary lineages. We explored the potential for anthropogenic forest fragmentation to act as a selective filter of avian phylogenetic diversity within the community of forest-dependent birds of the critically endangered Indian Ocean Coastal Belt Forest (IOCBF), South Africa. We conducted avian point count surveys during the austral breeding season, and calculated fragmentation metrics of forest structural complexity, patch size and isolation. We constructed a maximum likelihood phylogeny using the combined analysis of two mitochondrial genes and three nuclear markers and measured the influence of the fragmentation metrics on six measures of phylogenetic diversity. Our results indicated that the avian community was variously affected by anthropogenic forest fragmentation, with the different metrics of phylogenetic diversity responding with no definitive overall pattern. However, forest structural complexity emerged as an important metric explaining phylogenetic structuring. While the avian community’s phylogenetic diversity displayed resilience to anthropogenic fragmentation, previous research showed a reduction in functional diversity along the fragmentation gradient. Therefore, we recommend studies that especially aim to guide conservation management, incorporate both phylogenetic and functional diversity measures to sufficiently interrogate communities’ resilience to the threats under investigation.

Type
Research Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of BirdLife International

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bates, D., Machler, M., Bolker, B. and Walker, S. (2015) Fitting linear mixed-effects models using lme4. J. Stat. Soft. 67: 148.CrossRefGoogle Scholar
Bibby, C., Burgess, N. and Hill, D. (2000) Bird census techniques. Academic Press, London.Google Scholar
BirdLife International (2012) Zoothera guttata. – The IUCN Red List of Threatened Species 2012: e.T22708464A39716253.Google Scholar
Blomberg, S.P. and Garland, T. Jr, (2002), Tempo and mode in evolution: phylogenetic inerti a, adaptation and comparative methods. Journal of Evolutionary Biology, 15: 899910. https://doi.org/10.1046/j.1420-9101.2002.00472.xCrossRefGoogle Scholar
Bracken, M. E. S. and Low, N. H. N. (2012) Realistic losses of rare species disproportionately impact higher trophic levels. Ecol. Lett. 15: 461467.CrossRefGoogle ScholarPubMed
Brown, M. (2006). Annual and seasonal trends in avifaunal species richness in a coastal lowlands forest reserve in South Africa. Ostrich, 77(1-2), 5866. https://doi.org/10.2989/00306520609485509CrossRefGoogle Scholar
Burnham, K., Anderson, D., and Huyvaert, K. (2011) AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav. Ecol. Sociobiol. 65: 2335.CrossRefGoogle Scholar
Darriba, D., Taboada, G. L., Doallo, R. and Posada, D. (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9: 772.Google ScholarPubMed
Díaz, S. and Cabido, M. (2001) Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16: 646655.CrossRefGoogle Scholar
Ehlers Smith, D. A., Si, X., Ehlers Smith, Y. C., Kalle, R., Ramesh, T. and Downs, C. T. (2018a) Patterns of avian diversity across a decreasing patch-size gradient in a critically endangered sub-tropical forest system. J. Biogeogr. 45: 21182132.CrossRefGoogle Scholar
Ehlers Smith, D. A., Si, X., Ehlers Smith, Y. C. and Downs, C. T. (2018b) Seasonal variation in avian diversity and tolerance of migratory forest specialists to the patch-isolation gradient across a forest system. Biodivers. Conserv. 27: 37073727.CrossRefGoogle Scholar
Ehlers Smith, D. A., Ehlers Smith, Y. C., & Downs, C. T. (2017). Indian Ocean coastal thicket is of high conservation value for preserving taxonomic and functional diversity of forest-dependent bird communities in a landscape of restricted forest availability. Forest Ecology and Management, 390, 157165. https://doi.org/10.1016/j.foreco.2017.01.034CrossRefGoogle Scholar
Ehlers Smith, Y.C., Ehlers Smith, D.A., Seymour, C.L., Thébault, E., van Veen, F.F. (2015) Response of avian diversity to habitat modification can be predicted from life-history traits and ecological attributes. Landscape Ecology 30:12251239CrossRefGoogle Scholar
ESRI (2011) ArcGIS Desktop 10.2. Environmental Systems Research Institute, Redlands, USA.Google Scholar
Fahrig, L. (2013) Rethinking patch size and isolation effects: the habitat amount hypothesis. J. Biogeogr. 40: 16491663.CrossRefGoogle Scholar
Faith, D. P. (1992) Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61: 110.CrossRefGoogle Scholar
Frishkoff, L. O., et al. (2014) Loss of avian phylogenetic diversity in neotropical agricultural systems. Science 345: 13431346.Google ScholarPubMed
Image, GeoTerra (2014) KZN Province Land-Cover Mapping (from SPOT5 Satellite imagery circa 2013). Prepared for Ezemvelo KZN Wildlife (Biodiversity Research), South Africa.Google Scholar
Harris, D. J. and Rato, C. (2013) Why are Red List species not on the EDGE? A response to Winter et al. Trends Ecol. Evol. 28: 321322.CrossRefGoogle ScholarPubMed
He, X., Luo, K., Brown, C. and Lin, L. (2018) A taxonomic, functional, and phylogenetic perspective on the community assembly of passerine birds along an elevational gradient in southwest China. Ecol. Evol. 8: 27122720.CrossRefGoogle ScholarPubMed
Hughes, E. C., Edwards, D. P., Sayer, C. A., Martin, P. A. and Thomas, G. H. (2020) The effects of tropical secondary forest regeneration on avian phylogenetic diversity. J. Appl. Ecol. 57: 13511362.CrossRefGoogle Scholar
Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. and Mooers, A. O. (2012) The global diversity of birds in space and time. Nature 491: 444.CrossRefGoogle ScholarPubMed
Jetz, W., Thomas, G. H., Joy, J. B., Redding, D. W., Hartmann, K. and Mooers, A. O. (2014) Global distribution and conservation of evolutionary distinctness in birds. Current Biol. 24: 919930.CrossRefGoogle ScholarPubMed
Kembel, S. W., Cowan, P. D., Helmus, M. R., Cornwell, W. K., Morlon, H., Ackerly, D. D., Blomberg, S. P. and Webb, C. O. (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26: 14631464.CrossRefGoogle ScholarPubMed
Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J. and Higgins, D. G. (2007Clustal W and Clustal X version 2.0Bioinformatics 23: 29472948.CrossRefGoogle ScholarPubMed
La Sorte, F. A., et al. (2018) The phylogenetic and functional diversity of regional breeding bird assemblages are reduced and constricted through urbanization. Divers. Distrib. 24: 928938.Google Scholar
Low, A. B. and Rebelo, A. G. (1997) Vegetation of South Africa, Lesotho and Swaziland. Department of Environmental Affairs and Tourism, PretoriaGoogle Scholar
Maddison, W. P. and Maddison, D. R. (2018) Mesquite: a modular system for evolutionary analysis. http://www.mesquiteproject.orgGoogle Scholar
McEntee, J. P., Tobias, J. A., Sheard, C. and Burleigh, J. G. (2018) Tempo and timing of ecological trait divergence in bird speciation. Nature Ecol. Evol. 2: 11201127.CrossRefGoogle ScholarPubMed
Monnet, A. C., Jiguet, F., Meynard, C. M., Mouillot, D., Mouquet, N., Thuiller, W. and Devictor, D. (2014) Asynchrony of taxonomic, functional and phylogenetic diversity in birds. Global Ecol. Biogeog. 23: 780788.CrossRefGoogle ScholarPubMed
Morelli, F., et al. (2016) Evidence of evolutionary homogenization of bird communities in urban environments across Europe. Glob. Ecol. Biogeogr. 25: 12841293.CrossRefGoogle Scholar
Mouchet, M. A., Villeger, S., Mason, N. W. and Mouillot, D. (2010) Functional diversity measures: An overview of their redundancy and their ability to discriminate community assembly rules. Funct. Ecol. 24: 867876.CrossRefGoogle Scholar
Mucina, L. and Rutherford, M. C. (2011) The vegetation of South Africa, Lesotho and Swaziland. Strelitzia 19. South African National Biodiversity Institute, PretoriaGoogle Scholar
Murcia, C. (1995) Edge effects in fragmented forests: implications for conservation. Trends Ecol. Evol. 10: 5862.Google ScholarPubMed
Olivier, P. I., van Aarde, R. J. and Lombard, A. T. (2013) The use of habitat suitability models and species–area relationships to predict extinction debts in coastal forests, South Africa. Divers. Distrib. 19: 13531365.CrossRefGoogle Scholar
Owen, N. R., Gumbs, R., Gray, C. L. and Faith, D. P. (2019) Global conservation of phylogenetic diversity captures more than just functional diversity. Nature Comm. 10: 13.Google ScholarPubMed
Paradis, E. and Schliep, K. (2019). “ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R.” Bioinformatics 35: 526528.CrossRefGoogle ScholarPubMed
Parmesan, C. (2006) Ecological and evolutionary responses to recent climate change. Ann. Rev. Ecol. Evol. Syst. 37: 637669.CrossRefGoogle Scholar
R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.Google Scholar
Seymour, C. L., Simmons, R. E., Joseph, G. S. and Slingsby, J. A. (2015) On bird functional diversity: species richness and functional differentiation show contrasting responses to rainfall and vegetation structure in an arid landscape. Ecosystems 18: 971984.CrossRefGoogle Scholar
Si, X., Baselga, A., Leprieur, F., Song, X. and Ding, P. (2016) Selective extinction drives taxonomic and functional alpha and beta diversities in island bird assemblages. J Anim. Ecol. 85: 409418.CrossRefGoogle ScholarPubMed
Si, X., Cadotte, M. W., Zeng, D., Baselga, A., Zhao, Y., Li, J., Wu, Y., Wang, S. and Ding, P. (2017) Functional and phylogenetic structure of island bird communities. J. Anim. Ecol. 86: 532542.CrossRefGoogle ScholarPubMed
Sol, D., Bartomeus, I., González-Lagos, C. and Pavione, S. (2017) Urbanisation and the loss of phylogenetic diversity in birds. Ecol. Lett. 20: 721729.CrossRefGoogle ScholarPubMed
Swenson, N. G. (2014) Functional and phylogenetic ecology in R. Springer Science & Business Media, New YorkGoogle Scholar
Tucker, C. M., et al. (2017) A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biol. Rev. Camb. Philos. Soc. 92: 698715.CrossRefGoogle ScholarPubMed
Vane-Wright, R. I. et al. (1991) What to protect?–Systematics and the agony of choice. Biol. Conserv. 55: 235254.CrossRefGoogle Scholar
Vellend, M., Cornwell, W. K., Magnuson-Ford, K. and Mooers, A. (2011) Measuring phylogenetic diversity. In: Magurran, A. E., McGill, B. J. (eds.) Biological Diversity: Frontiers in Measurement and Assessment. Oxford University Press, Oxford, pp 194207.Google Scholar
Webb, C. O., Ackerly, D. D., McPeek, M. A. and Donoghue, M. J. (2002) Phylogenies and community ecology. Ann. Rev. Ecol. System. 33: 475505.CrossRefGoogle Scholar
Winter, M., Devictor, V. and Schweiger, O. (2013) Phylogenetic diversity and nature conservation: where are we? Trends Ecol. Evol. 4: 199204.CrossRefGoogle Scholar
Zwickl, D. J. (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. PhD thesis, University of Texas, Austin.Google Scholar
Supplementary material: File

Ehlers Smith et al. supplementary material

Ehlers Smith et al. supplementary material

Download Ehlers Smith et al. supplementary material(File)
File 531.4 KB