Skip to main content Accessibility help
×
Home
Hostname: page-component-79b67bcb76-tlg78 Total loading time: 0.235 Render date: 2021-05-15T17:32:47.088Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Improved methods for reducing translocation mortality and obtaining reliable population projections for reintroduction of the New Zealand Rifleman Acanthisitta chloris

Published online by Cambridge University Press:  15 April 2019

SARAH WITHERS
Affiliation:
School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand.
DOUG ARMSTRONG
Affiliation:
Wildlife Ecology Group, Massey University, Palmerston North, New Zealand.
TAMSIN WARD-SMITH
Affiliation:
Ecologist, 2 Gow Avenue, Haumoana, Napier 4102, New Zealand.
STUART PARSONS
Affiliation:
School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand.
MARK E. HAUBER
Affiliation:
School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand.
Corresponding
E-mail address:

Summary

Despite many notable successes, the failure rate of animal translocations remains high. Conservation practitioners and reintroduction specialists have emphasised the need for ongoing documentation of translocation attempts, whether successful or not, including detailed methodologies and monitoring approaches. This study reports on the first translocation of the North Island subspecies of New Zealand’s smallest bird, the endemic Rifleman Acanthisitta chloris granti. We describe an improved transfer methodology following recommendations arising from a previous translocation of South Island Rifleman Acanthisitta chloris chloris. Key modifications included a reduced capture window, shorter holding times, lack of extended aviary housing, and separation of territorial individuals during holding. Survival from capture to release increased from 52% to 97% using this new methodology. However, only 22% of 83 released birds were found in the reserve the next breeding season, resulting in an initial breeding population of only six males and five females. An integrated Bayesian analysis of three years of subsequent population data, including a population boost from a second translocation, projected a median decrease to 0–5 females over 10 years, but with 95% prediction intervals ranging from 0 to 33. These projections explicitly account for parameter uncertainty, as well as demographic stochasticity, and illustrate the need to do so when making inferences for small reintroduced populations.

Type
Research Article
Copyright
Copyright © BirdLife International 2019 

Access options

Get access to the full version of this content by using one of the access options below.

Footnotes

1

Present address: School of Earth, Environmental and Biological Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia.

2

Present address: Department of Animal Biology, School of Integrative Biology, University of Illinois, Urbana-Champaign, IL 61801, USA.

References

Adams, N. J., Parker, K. A., Cockrem, J. F., Brunton, D. H. and Candy, E. J. (2010) Corticosterone responses and post-release survival in translocated North Island Saddlebacks (Philesturnus rufusater) in New Zealand. Emu 110: 296301.CrossRefGoogle Scholar
Ardern, S. L. and Lambert, D. M. (1997) Is the black robin in genetic peril? Mol. Ecol. 6: 2128.CrossRefGoogle Scholar
Armstrong, D. P. and Davidson, R. S. (2006) Developing population models for guiding reintroductions of extirpated bird species back to the New Zealand mainland. New Zealand J. Ecol. 30: 7385.Google Scholar
Armstrong, D. P. and Ewen, J. G. (2001) Assessing the value of follow-up translocations: a case study using New Zealand robins. Biol. Conserv. 101: 239247.CrossRefGoogle Scholar
Armstrong, D. P. and Ewen, J. G. (2002) Dynamics and viability of a New Zealand Robin population reintroduced to regenerating fragmented habitat. Conserv. Biol. 16: 10741085.CrossRefGoogle Scholar
Armstrong, D. P. and McLean, I. G. (1995) New Zealand translocations: Theory and practice. Pacific Conserv. Biol. 2: 3954.CrossRefGoogle Scholar
Armstrong, D. P. and Reynolds, M. H. (2012) Modelling reintroduced populations: the state of the art and future directions. In Ewen, J. G., Armstrong, D. P., Parker, K. and Seddon, P. J., eds. Reintroduction biology: Integrating science and management. Oxford, UK: Wiley-Blackwell.Google Scholar
Armstrong, D. P. and Seddon, P. J. (2008) Directions in reintroduction biology. Trends Ecol. Evol. 23: 2025CrossRefGoogle ScholarPubMed
Armstrong, D. P. and Wittmer, H. U. (2011) Incorporating Allee effects into reintroduction strategies. Ecol. Restoration 26: 687695.Google Scholar
Armstrong, D. P., Castro, I., Alley, J. C., Feenstra, B. and Perrott, J. K. (1999) Mortality and behaviour of hihi, an endangered New Zealand honeyeater, in the establishment phase following translocation. Biol. Conserv. 89: 329339.CrossRefGoogle Scholar
Armstrong, D. P., Castro, I. and Griffiths, R. (2007) Using adaptive management to determine requirements of re-introduced populations: the case of the New Zealand hihi. J. Appl. Ecol. 44: 953962.CrossRefGoogle Scholar
Armstrong, D. P., Davidson, R. S., Dimond, W. J., Perrott, J. K. , Castro, I., Ewen, J., Griffiths, G. R. and Taylor, J. (2002) Population dynamics of reintroduced forest birds on New Zealand islands. J. Biogeogr. 29: 609621.CrossRefGoogle Scholar
Armstrong, D. P., Raeburn, E. H., Lewis, R. M. and Ravine, D. (2006) Estimating the viability of a reintroduced New Zealand Robin population as a function of predator control. J. Wildl. Manage. 70: 10201027.CrossRefGoogle Scholar
Barker, R. J., Schofield, M. R., Armstrong, D. P. and Davidson, R. S. (2009) Bayesian hierarchical models for inference about population growth. Pp 317 in Thomson, D. L., Cooch, E. G. and Conroy, M. J., eds. Modelling demographic processes in marked populations. New York, USA: Springer.CrossRefGoogle Scholar
Benayas, J. M. R., Newton, A. C., Diaz, A. and Bullock, J. M. (2009) Enhance of biodiversity and ecosystem services by ecological restoration: A meta-analysis. Science 325: 11211124.CrossRefGoogle Scholar
Besbeas, P., Freeman, S. and Morgan, B. (2005) The potential of integrated population modelling. Australian & New Zealand J. Statistics [Online] 47: 3548.CrossRefGoogle Scholar
Bouzat, J. L., Johnson, J. A., Toepfer, J. E., Simpson, S. A., Esker, T. L. and Westemeier, R. L. (2009) Beyond the beneficial effects of translocations as an effective tool for the genetic restoration of isolated populations. Conserv. Genet. 10: 191201.CrossRefGoogle Scholar
Byrne, A. J. (1999) Effects of population bottlenecks on the South Island robin, Petroica australis australis. MSc Thesis. University of Canterbury, Christchurch.Google Scholar
Cameron, H. B. (1990) Spacing behaviour, time budgets and territoriality in Rifleman (Acanthisitta chloris chloris) and grey warbler (Gerygone igata) at kowhai bush. MSc Thesis. University of Canterbury, Christchurch.Google Scholar
Carpenter, J. R. and Kenward, M. G. (2013) Multiple imputation and its application. Chichester, UK: John Wiley and Sons, Ltd.CrossRefGoogle Scholar
Clout, M. N. and Gaze, P. D. (1984) Effects of plantation forestry on birds in New Zealand. J. Appl. Ecol. 21: 795815.CrossRefGoogle Scholar
Deredec, A. and Courchamp, F. (2007) Importance of the Allee effect for reintroductions. Ecoscience 14: 440451.CrossRefGoogle Scholar
Dickens, M. J., Delehanty, D. J. and Romero, L. M. (2009) Stress and translocation: alterations in the stress physiology of translocated birds. Proc. R. Soc. Lond. B 276: 20512056.CrossRefGoogle ScholarPubMed
Dickens, M. J., Delehanty, D. J. and Romero, L. M. (2010) Stress: An inevitable component of animal translocation. Biol. Conserv. 143: 13291341.CrossRefGoogle Scholar
Ebrahimi, M., Ebrahemie, E. and Bull, C. M. (2015) Minimising the cost of translocation failure with decision-tree models that predict species’ behavioral response in translocation sites. Conserv. Biol. 29: 12081216.CrossRefGoogle Scholar
Fischer, J. and Lindenmayer, D. B. (2000) An assessment of the published results of animal relocations. Biol. Conserv. 96: 111.CrossRefGoogle Scholar
Frankham, R. (2005) Genetics and extinction. Biol. Conserv. 126: 131140.CrossRefGoogle Scholar
Gaze, P. D. (1978) Annual general meeting report: Breeding biology of the North Island Rifleman. Notornis 25: 244–244.Google Scholar
Gray, R. S. (1969) Breeding biology of Rifleman at Dunedin. Notornis 16: 522.Google Scholar
Griffith, B., Michael Scott, J., Carpenter, J. W. and Reed, C. (1989) Translocation as a species conservation tool: Status and strategy. Science 245: 477479.CrossRefGoogle ScholarPubMed
Groombridge, J. J., Massey, J. G., Bruch, J. C., Malcolm, T. R., Brosius, C. N., Okada, M. M. and Sparklin, B. (2004) Evaluating stress in a Hawaiian honeycreeper, Paroreomyza montana, following translocation. J. Field Ornithol. 75: 183187.CrossRefGoogle Scholar
Higgins, P. J., Jin, P. and Steele, K. W. Eds. (2001) Handbook of Australian, New Zealand and Antarctic birds. Oxford, UK: Oxford University Press.Google Scholar
Holdaway, R. N. (1999) Introduced predators and avifaunal extinction in New Zealand. In MacPhee, R. D. E., ed. Extinctions in near time: Causes, contexts and consequences.). New York, USA: Kluwer Academic and Plenum Press.Google Scholar
Jamieson, I. G. (2011) Founder effects, inbreeding, and loss of genetic diversity in four avian reintroduction programs. Conserv. Biol. 25: 115123.CrossRefGoogle ScholarPubMed
Jamieson, I. G., Tracy, L. N., Fletcher, D. and Armstrong, D. P. (2007) Moderate inbreeding depression in a reintroduced population of North Island robins. Anim. Conserv. 10: 95102.CrossRefGoogle Scholar
Jamieson, I. G., Wallis, G. P. and Briskie, J. V. (2006) Inbreeding and endangered species management: Is New Zealand out of step with the rest of the world? Conserv. Biol. 20: 3847.CrossRefGoogle Scholar
Kéry, M. and Schaub, M. (2012) Bayesian population analysis using WinBUGS. 1st Edition. San diego, CA: Academic Press.Google Scholar
Komdeur, J., Huffstadt, A., Prast, W., Castle, G., Mileto, R. and Wattel, J. (1995) Transfer experiments in Seychelles warblers to new islands: changes in dispersal and helping behaviour. Anim. Behav. 49: 695708.CrossRefGoogle Scholar
Leech, T., Craig, E., Beaven, B., Mitchell, D. K. and Seddon, P. J. (2007) Reintroduction of rifleman Acanthisitta chloris to Ulva Island, New Zealand: evalution of techniques and population persistence. Oryx 41: 369375.CrossRefGoogle Scholar
Lill, A. (1991) Behavioural energetics of overwintering in the Rifleman Acanthisitta chloris. Austral. J. Zool. 39: 643654.Google Scholar
Lloyd, B. D. and Powlesland, R. G. (1994) The decline of Kakapo Strigops habroptilus and attempts at conservation by translocation. Biol. Conserv. 69: 7585.CrossRefGoogle Scholar
Lovegrove, T. (1996) A comparison of the effects of predation by Norway (Rattus norvegicus) and Polynesian rats (R. exulans) on the Saddleback (Philesturnus carunculatus). Notornis 43: 91112.Google Scholar
Lunn, D., Spiegelhalter, D., Thomas, A. and Best, N. (2009) The BUGS project: Evolution, critique and future directions. Statistics in Medicine 28: 30493067.CrossRefGoogle ScholarPubMed
McEwen, B. S. (1998) Seminars in medicine of the Beth Israel Deaconess Medical Center: protective and damaging effects of stress mediators. New England J. Medicine 338: 171179.CrossRefGoogle Scholar
Mitchell, D. (2004) Population status and sustainability of titipounamu (Acanthisitta chloris chloris) on Ulva Island, 10 months after translocation./ Honors Dissertation, University of Otago, New Zealand.Google Scholar
Mumme, R. L. and Below, T. H. (1999) Evaluation of translocation for the threatened florida scrub-jay. J. Wildl. Manage. 63: 833842.CrossRefGoogle Scholar
Musil, D. D., Connelly, J. W. and Reese, K. P. (1993) Movements, survival and reproduction of Sage Grouse translocated into Central Idaho. J. Wildl. Manage. 57: 8591.CrossRefGoogle Scholar
Nichols, J. D. and Armstrong, D. P. (2012) Monitoring for reintroductions. In Ewen, J. G., Armstrong, D. P., Parker, K. A. and Seddon, P. J., eds. Reintroduction biology: Integrating science and management. Oxford, UK: Blackwell Publishing Ltd.Google Scholar
Oro, D., Martinez-Abrain, A., Villuendas, E., Sarzo, B., Minguez, E., Carda, J. and Genovart, M. (2011) Lessons from a failed translocation programme with a seabird species: Determinants of success and conservation value. Biol. Conserv. 144: 851858.CrossRefGoogle Scholar
Parker, K., Dickens, M. J., Clarke, R. H. and Lovegrove, T. (2011) The theory and practice of catching, holding, moving and releasing animals. In Ewen, J. G., Armstrong, D. P., Parker, K. A. and Seddon, P. J., eds. Reintroduction biology: Integrating science and management. Oxford, UK: Blackwell Publishing Ltd.Google Scholar
Parker, K. A. (2008) Translocations: Providing outcomes for wildlife, resource managers, scientists, and the human community. Restoration Ecol. 16: 204209.CrossRefGoogle Scholar
Preston, S. A. J., Briskie, J. V. and Hatchwell, B. J. (2016) Adult helpers increase the recruitment of closely related offspring in the cooperatively breeding rifleman. Behav. Ecol. 27: 16171626Google ScholarPubMed
Reinert, H. K. and Rupert, R. R. (1999) Impacts of translocation on behavior and survival of timber rattlesnakes, Crotalus horridus. J. Herpetol. 33: 4561.CrossRefGoogle Scholar
Ridley, A. R. (2007) Factors affecting offspring survival and development in a cooperative bird: social, maternal and environmental effects. J. Anim. Ecol. 76: 750760.CrossRefGoogle Scholar
Robertson, C. J. M., Hyvonen, P., Fraser, M. J. and Pickard, C. R. (2007) Atlas of bird distribution in New Zealand 1999-2004. Auckland: Ornithological Society of New Zealand Inc.Google Scholar
Robertson, H. A. and Heather, B. D. (1999) The hand guide to the birds of New Zealand. Auckland: Penguin Books.Google Scholar
Sarrazain, F. and Legendre, S. (2000) Demographic approach to releasing adults versus young in reintroductions. Conserv. Biol. 14: 488500.CrossRefGoogle Scholar
Schlapfer, F. and Schmid, B. (1999) Ecosystem effects of biodiversity: A classification of hypotheses and exploration of empirical results. Ecol. Applic. 9: 893912.CrossRefGoogle Scholar
Seddon, P. J., Armstrong, D. P. and Maloney, R. F. (2007) Developing the science of reintroduction biology. Conserv. Biol. 21: 303312.CrossRefGoogle ScholarPubMed
Seddon, P. J., Griffiths, C. J., Soorae, P. S. and Armstrong, D. P. (2014) Reversing defaunation: Restoring species in a changing world. Science 345(6195): 406412.CrossRefGoogle Scholar
Sherley, G. (1985) The breeding system of the South Island rifleman at Kowhai Bush, Kaikoura, New Zealand. PhD Thesis. University of Canterbury Christchurch, New Zealand.Google Scholar
Sherley, G. (1990) Co-operative breeding in Rifleman (Acanthisitta chloris): Benefits to parents, offspring and helpers. Behaviour 112: 122.CrossRefGoogle Scholar
Sherley, G. (1993) Parental investment, size sexual dimorphism, and sex ratio in the rifleman (Acanthisitta chloris). New Zealand J. Zool. 20: 211217.CrossRefGoogle Scholar
Sherley, G. (1994) Co-operative parental care: Contribution of the male Rifleman (Acanthisitta chloris) to the breeding effort. Notornis 41: 7181.Google Scholar
Sibley, C. G. and Ahlquist, J. E. (1990) Phylogeny and classification of birds: a study in molecular evolution. New Haven, USA: Yale University Press.Google Scholar
Spiegelhalter, D., Thomas, A., Best, N. and Lunn, D. (2003) WinBUGS user manual, version 1.4.3.Google Scholar
Sutherland, W. J., Pullin, A. S., Dolman, P. M. and Knight, T. M. (2004) The need for evidence-based conservation. Trends Ecol. Evol. 19: 305308.CrossRefGoogle ScholarPubMed
Tavecchia, G., Viedma, C., Martinez-Abrain, A., Bartolome, M.-A., Gomez, J. A. and Oro, D. (2009) Maximizing re-introduction success: Assessing the immediate cost of release in a threatened waterfowl. Biol. Conserv. 142: 30053012.CrossRefGoogle Scholar
Taylor, S. S. and Jamieson, I. G. (2007) Factors affecting the survival of founding individuals in translocated New Zealand Saddlebacks Philesturnus carunculatus. Ibis 149: 783791.CrossRefGoogle Scholar
Taylor, S. S., Jamieson, I. G. and Armstrong, D. P. (2005) Successful island reintroductions of New Zealand robins and saddlebacks with small numbers of founders. Anim. Conserv. 8: 415420.CrossRefGoogle Scholar
Westemeier, R. L., Brawn, J. D., Simpson, S. A., Esker, T. L., Jansen, R. W., Walk, J. W., Kershner, E. L., Bouzat, J. L. and Paige, K. N. (1998) Tracking the long-term decline and recovery of an isolated population. Science 282(5394): 16951698.CrossRefGoogle ScholarPubMed
Withers, S. (2009) Observations of bellbird (Anthornis melanura) aggression toward North Island rifleman (Acanthisitta chloris granti) in a translocated population. Notornis 56: 4445.Google Scholar
Wolf, C. M., Garland, T. Jr. and Griffith, B. (1998) Predictors of avian and mammalian translocation success: Reanalysis with phylogenetically independent contrasts. Biol. Conserv. 86: 243255.CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Improved methods for reducing translocation mortality and obtaining reliable population projections for reintroduction of the New Zealand Rifleman Acanthisitta chloris
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Improved methods for reducing translocation mortality and obtaining reliable population projections for reintroduction of the New Zealand Rifleman Acanthisitta chloris
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Improved methods for reducing translocation mortality and obtaining reliable population projections for reintroduction of the New Zealand Rifleman Acanthisitta chloris
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *