Skip to main content Accessibility help
Hostname: page-component-6c8bd87754-qjg4w Total loading time: 0.305 Render date: 2022-01-19T07:15:32.552Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Automatization in second language sentence processing: Relationship between elicited imitation and maze tasks*

Published online by Cambridge University Press:  16 August 2016

Faculty of Foreign Languages, Kanagawa University
Graduate School of Education, Tokyo Gakugei University
Address for correspondence: Yuichi Suzuki, Faculty of Foreign Languages, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama-shi, Kanagawa 221–8686, Japan


The present study investigates the automatization of second language (L2) sentence processing. It compares the extent to which a mere speedup (faster execution) and restructuring (more stable execution) of sentence processing contribute to L2 oral performance. The maze task is used to measure the speed (reaction time, RT) and processing stability (coefficient of variance, CV) of sentence processing. The elicited imitation (EI) task measures L2 oral proficiency (repetition accuracy and accuracy in plural and third person s). These tasks were performed by 110 English-as-a-foreign-language learners with Japanese as their L1. The results show that only RT, not CV, significantly predicts L2 oral proficiency. Even though a subgroup of learners, who previously stayed in an English-speaking country, demonstrated some indications of automatization, RT was a better predictor of L2 oral proficiency than CV, irrespective of immersion experience. These findings suggest that CV has little practical value in predicting L2 oral proficiency.

Research Article
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Supplementary material can be found online at


We would like to express our gratitude to Professors Yoshiki Takayama, Misato Usukura, and Tetsuo Baba for their generous cooperation in data collection. We are very grateful to Ms. Kanno for her assistance in data coding. We wish to thank the Associate Editor, Prof. Ludovica Serratrice, and the three anonymous reviewers for providing insightful and constructive feedback.


Akamatsu, N. (2008). The effects of training on automatization of word recognition in English as a foreign language. Applied Psycholinguistics, 29 (02), 175193. doi:10.1017/S0142716408080089 CrossRefGoogle Scholar
Altmann, G., & Kamide, Y. (2007). The real-time mediation of visual attention by language and world knowledge: Linking anticipatory (and other) eye movements to linguistic processing. Journal of memory and language, 57 (4), 502518.CrossRefGoogle Scholar
Anderson, J. R. (2015). Cognitive psychology and its implications (8th ed.). New York, NY: Worth Publishers.Google ScholarPubMed
Baddeley, A. D., Thomson, N., & Buchanan, M. (1975). Word length and the structure of short-term memory. Journal of verbal learning and verbal behavior, 14 (6), 575589.CrossRefGoogle Scholar
Chapelle, C. A., & Heift, T. (2009). Individual Learner Differences in CALL: The Field Independence/Dependence (FID) Construct. CALICO journal, 26 (2), 246266.CrossRefGoogle Scholar
Cobb, T. (2002). Web Vocabprofile. Retrieved from Google Scholar
Cowan, N., Day, L., Saults, J. S., Keller, T. A., Johnson, T., & Flores, L. (1992). The role of verbal output time in the effects of word length on immediate memory. Journal of memory and language, 31 (1), 117.CrossRefGoogle Scholar
De Jong, N., & Perfetti, C. A. (2011). Fluency Training in the ESL Classroom: An Experimental Study of Fluency Development and Proceduralization. Language Learning, 61 (2), 533568.CrossRefGoogle Scholar
De Jong, N., Steinel, M. P., Florijn, A., Schoonen, R., & Hulstijn, J. (2013). Linguistic skills and speaking fluency in a second language. Applied Psycholinguistics, 34 (5), 893916.CrossRefGoogle Scholar
DeKeyser, R. M. (1997). Beyond Explicit Rule Learning. Studies in second language acquisition, 19 (2), 195221.CrossRefGoogle Scholar
DeKeyser, R. M. (2007). Study abroad as foreign language practice. In DeKeyser, R. M. (Ed.), Practice in a second language: Perspectives from applied linguistics and cognitive psychology (pp. 208226). New York, NY: Cambridge Universtiy Press.CrossRefGoogle Scholar
DeKeyser, R. M. (2015). Skill acquisition theory. In VanPatten, B. & Williams, J. (Eds.), Theories in second language acquisition: An introduction (2nd ed., pp. 94112). New York, NY: Routledge.Google Scholar
DeKeyser, R. M., & Sokalski, K. J. (1996). The Differential Role of Comprehension and Production Practice. Language Learning, 46 (4), 613642. doi:10.1111/j.1467-1770.1996.tb01354.x CrossRefGoogle Scholar
Ellis, R. (2009). Investigating Learning Difficulty in Terms of Implicit and Explicit Knowledge. In Ellis, R., Loewen, S., Elder, C., Erlam, R., Philp, J., & Reinders, H. (Eds.), Implicit and explicit knowledge in second language learning, testing and teaching (pp. 139142). Tonawanda, NY: Multilingual Matters.Google Scholar
Enkin, E. (2012). The maze task: Training methods for second language learning. Arizona Working Papers in SLA & Teaching, 19, 5681.Google Scholar
Enkin, E., & Forster, K. I. (2014). Examining the Training Effect of Using a Psycholinguistic Experimental Technique for Second Language Learning. Journal of Linguistics and Language Teaching, 5 (2), 161180.Google Scholar
Erlam, R. (2006). Elirefd imitation as a measure of L2 implicit knowledge: An empirical validation study. Applied linguistics, 27 (3), 464491.CrossRefGoogle Scholar
Council of Europe. (2001). Common European Framework of Reference for Languages: Learning, Teaching, Assessment. (CEFR). New York: Cambridge University Press.Google Scholar
Forster, K. I., & Forster, J. C. (2003). DMDX: A Windows display program with millisecond accuracy. Behavior Research Methods, Instruments, & Computers, 35 (1), 116124.CrossRefGoogle ScholarPubMed
Forster, K. I., Guerrera, C., & Elliot, L. (2009). The maze task: Measuring forced incremental sentence processing time. Behavior Research Methods, 41 (1), 163171.CrossRefGoogle ScholarPubMed
Harrington, M. (2006). The lexical decision task as a measure of L2 lexical proficiency. EUROSLA Yearbook, 6 (1), 147168.CrossRefGoogle Scholar
Hulstijn, J. H., Van Gelderen, A., & Schoonen, R. (2009). Automatization in second language acquisition: What does the coefficient of variation tell us? Applied Psycholinguistics, 30 (4), 555582.CrossRefGoogle Scholar
Jensen, E. D., & Vinther, T. (2003). Exact Repetition as Input Enhancement in Second Language Acquisition. Language Learning, 53 (3), 373428. doi:10.1111/1467-9922.00230 CrossRefGoogle Scholar
Kamide, Y., Scheepers, C., & Altmann, G. (2003). Integration of syntactic and semantic information in predictive processing: Cross-linguistic evidence from German and English. Journal of psycholinguistic research, 32 (1), 3755.CrossRefGoogle ScholarPubMed
Koda, K. (2007). Reading and Language Learning: Crosslinguistic Constraints on Second Language Reading Development. Language Learning, 57 (s1), 144.CrossRefGoogle Scholar
Kormos, J. (2006). Speech production and second language acquisition. New York: Routledge.Google Scholar
Levelt, W. J. M. (1989). Speaking: From intention to articulation. Cambridge, MA: The MIT Press.Google Scholar
Levelt, W. J. M. (1999). Producing spoken language: A blueprint of the speaker. In Brown, C. M. & Hagoort, P. (Eds.), The neurocognition of language (pp. 83122). Oxford, UK: Oxford University Press.Google Scholar
Lim, H., & Godfroid, A. (2015). Automatization in second language sentence processing: A partial, conceptual replication of Hulstijn, Van Gelderen, and Schoonen's 2009 study. Applied Psycholinguistics, 36 (5), 12471282. doi:10.1017/S0142716414000137 CrossRefGoogle Scholar
Mackey, A., & Gass, S. M. (2005). Second language research: Methodology and design. Mahwah: NJ: Routledge.Google Scholar
McBride, K. (2011). The effect of rate of speech and distributed practice on the development of listening comprehension. Computer Assisted Language Learning, 24 (2), 131154.CrossRefGoogle Scholar
McLaughlin, B. (1987). Theories of second-language learning. London: Routledge.Google Scholar
Ortega, L., Iwashita, N., Norris, J., & Rabie, S. (2002). An investigation of elirefd imitation in crosslinguistic SLA research. Paper presented at the Conference handout from paper presented at the meeting of the Second Language Research Forum, Toronto, Canada.Google Scholar
Plonsky, L., & Oswald, F. L. (2014). How Big Is “Big”? Interpreting Effect Sizes in L2 Research. Language Learning, 64 (4), 878912. doi:10.1111/lang.12079 CrossRefGoogle Scholar
Rodgers, D. M. (2011). The automatization of verbal morphology in instructed second language acquisition. IRAL-International Review of Applied Linguistics in Language Teaching, 49 (4), 295319.CrossRefGoogle Scholar
Rubin, D. B. (1977). Formalizing subjective notions about the effect of nonrespondents in sample surveys. Journal of the American Statistical Association, 72 (359), 538543.CrossRefGoogle Scholar
Segalowitz, N. S. (2003). Automaticity and second languages. In Doughty, C. J. & Long, H. M. (Eds.), The handbook of second language acquisition (pp. 382408). Oxford: Blackwell Publishers.CrossRefGoogle Scholar
Segalowitz, N. S. (2010). Cognitive bases of second language fluency. NY: Taylor & Francis.Google Scholar
Segalowitz, N. S., & Freed, B. F. (2004). Context, contact, and cognition in oral fluency acquisition. Studies in second language acquisition, 26 (2), 173199.CrossRefGoogle Scholar
Segalowitz, N. S., & Segalowitz, S. J. (1993). Skilled performance, practice, and the differentiation of speed-up from automatization effects: Evidence from second language word recognition. Applied Psycholinguistics, 14 (3), 369–369.CrossRefGoogle Scholar
Segalowitz, N. S., Watson, V., & Segalowitz, S. J. (1995). Vocabulary skill: single-case assessment of automaticity of word recognition in a timed lexical decision task. Second Language Research, 11 (2), 121136. doi:10.1177/026765839501100204 CrossRefGoogle Scholar
Segalowitz, S. J., Segalowitz, N. S., & Wood, A. G. (1998). Assessing the development of automaticity in second language word recognition. Applied Psycholinguistics, 19 (1), 5367.CrossRefGoogle Scholar
Spada, N., Shiu, J. L.-J., & Tomita, Y. (2015). Validating an Elirefd Imitation Task as a Measure of Implicit Knowledge: Comparisons With Other Validation Studies. Language Learning, 65 (3), 723751. doi:10.1111/lang.12129 CrossRefGoogle Scholar
Suzuki, Y., & DeKeyser, R. M. (2015). Comparing Elirefd Imitation and Word Monitoring as Measures of Implicit Knowledge. Language Learning, 65 (4), 860895. doi:10.1111/lang.12138 CrossRefGoogle Scholar
Tracy-Ventura, N., McManus, K., Norris, J., & Ortega, L. (2014). ‘Repeat as much as you can’: Elirefd imitation as a measure of oral proficiency in L2 French. In Leclercq, P., AEdmonds, A., & Hilton, H. (Eds.), Measuring L2 Proficiency: Perspectives from SLA. Bristol: Multilingual Matters (pp. 143166).Google Scholar
Witzel, N., Witzel, J., & Forster, K. I. (2012). Comparisons of Online Reading Paradigms: Eye Tracking, Moving-Window, and Maze. Journal of psycholinguistic research, 41 (2), 105128. doi:10.1007/s10936-011-9179-x CrossRefGoogle ScholarPubMed
Wu, S. L., & Ortega, L. (2013). Measuring global oral proficiency in SLA research: A new elirefd imitation test of L2 Chinese. Foreign Language Annals, 46 (4), 680704.CrossRefGoogle Scholar
Yan, X., Maeda, Y., Lv, J., & Ginther, A. (2015). Elirefd imitation as a measure of second language proficiency: A narrative review and meta-analysis. Language Testing, Online First.Google Scholar
Supplementary material: File

Suzuki and Sunada supplementary material

Appendix S1

Download Suzuki and Sunada supplementary material(File)
File 18 KB
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Automatization in second language sentence processing: Relationship between elicited imitation and maze tasks*
Available formats

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Automatization in second language sentence processing: Relationship between elicited imitation and maze tasks*
Available formats

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Automatization in second language sentence processing: Relationship between elicited imitation and maze tasks*
Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *