No CrossRef data available.
Article contents
Multiple 5-HT systems and multiple punishment processes
Published online by Cambridge University Press: 04 February 2010
Abstract
An abstract is not available for this content so a preview has been provided. Please use the Get access link above for information on how to access this content.
- Type
- Open Peer Commentary
- Information
- Copyright
- Copyright © Cambridge University Press 1986
References
Abrams, T. W., Castellucci, V. F., Camardo, J. S., Kandel, E. R. & Lloyd, P. E. (1984) Two endogenous neuropeptides modulate the gill and siphen withdrawal reflex in Aplysia by presynaptic facilitation involving cAMP-dependent closure of a serotonin-sensitive potassium channel. Proceedings of the National Academy of Sciences of the U.S.A. 81:7956–60. [ENS]CrossRefGoogle Scholar
Adams, D. B. (1979) Brain mechanisms for offense, defense and submission. Behavioral and Brain Sciences 2:201–41. [FGG]CrossRefGoogle Scholar
Ågren, H. (1980) Symptom patterns in unipolar and bipolar depression correlating with monoamine metabolites in the cerebrospinal fluid. 1. General patterns. Psychiatry Research 3:211–23. [DS]CrossRefGoogle Scholar
Ågren, H. (1980) Symptom patterns in unipolar and bipolar depression correlating with monoamine metabolites in the cerebrospinal fluid. 2. Suicide. Psychiatry Research 3:225–36. [taPS]CrossRefGoogle Scholar
Andrade, R. & Aghajanian, G. K. (1984) Locus coeruleus activity in vitro: Intrinsic regulation by a calcium-dependent potassium conductance but not α2-adrenoceptors. Journal of Neuroscience 4:161–70. [JP]CrossRefGoogle ScholarPubMed
Anisman, H., Irwin, J., & Sklar, L. S. (1979) Deficits of escape performance following catecholamine depletion: Implications for behavioral deficits induced by uncontrollable stress. Psychopharmacology 64:163–70. [taPS]CrossRefGoogle ScholarPubMed
Anne, O. & Rasa, E. (1980) Ethological aspects of aggressive behaviour. Abstracts of papers presented at the NATO Advanced Study Institute, “The Biology of Aggression,” 07 21–30, 1980, Chateau de Bonas, France. [LV]Google Scholar
Ansseau, M., Doumont, A., Thiry, D. & Gelders, Y. (1983) Pilot study of a specific serotonergic antagonist, pirenperone, in the treatment of anxiety disorders. Acta Psychiatrica Belgica 83:517–24. [FGG]Google ScholarPubMed
Åsberg, M., Martensson, B. & Wagner, A. (1985) Biochemical indicators of serotonin function in affective illness (in press). [rPS]Google Scholar
Åsberg, M., Träskman, L. & Thorén, P. (1976) 5-HIAA in the cerebrospinal fluid: A biochemical suicide predictor? Archives of General Psychiatry 33:1193–97. [DS, MZ]CrossRefGoogle ScholarPubMed
Asin, K. E. & Fibiger, H. C. (1983) An analysis of neuronal elements within the median nucleus of the raphe that mediate lesion-induced increases in locomotor activity. Brain Research 268:211–23. [JP, DW]CrossRefGoogle ScholarPubMed
Asin, K. E. & Fibiger, H. C. (1984) Spontaneous and delayed spatial alternation following damage to specific neuronal elements within the nucleus medianus raphe. Behavioral Brain Research 13:241–50. [DW]CrossRefGoogle ScholarPubMed
Asin, K. E., Wirtshafter, D. & Fibiger, H. C. (1985) Electrolytic, but not 5,7-dihydroxytryptamine, lesions of the nucleus medianus raphe impair acquisition of a radial maze task. Behavioral and Neural Biology (in press). [DW]CrossRefGoogle Scholar
Asin, K. E., Wirtshafter, D. & Kent, E. W. (1979) Straight alley acquisition and extinction and open field activity following discrete electrolytic lesions of the mesencephalic raphe nuclei. Behavioral and Neural Biology 25:242–56. [DW]CrossRefGoogle ScholarPubMed
Asin, K. E., Wirtshafter, D. & Kent, E. W. (1980) The effects of electrolytic median raphe lesions on two measures of latent inhibition. Behavioral and Neural Biology 28:408–17. [DW]CrossRefGoogle ScholarPubMed
Asin, K. E., Wirtshafter, D. & Tabakoff, B. (1984) Behavioral effects of diazepam in rats with midbrain raphe lesions. Society for Neuroscience Abstracts 10:260. [DW]Google Scholar
Audi, E. A. & Graeff, F. G. (1984) Benzodiazepine receptors in the periaqueductal gray mediate anti-aversive drug action. European Journal of Pharmacology 103:279–85. [FGG]CrossRefGoogle ScholarPubMed
Azmitia, E. C. (1978) The serotonin-producing neurons of the midbrain median and dorsal raphe nuclei. In: Handbook of psychopharmacology, vol. 9, Chemical pathways in the brain, ed. Iversen, L. L., Iversen, S. D. & Snyder, S. H.. Plenum Press. [JP]Google Scholar
Azmitia, E. C. & Segal, M. (1978) An autoradiographic analysis of the differential ascending projections of the dorsal and median raphe nuclei n the rat. Journal of Comparative Neurology 179:641–67. [taPS]CrossRefGoogle Scholar
Baldessarini, R. J., Amatruda, T. T., Griffith, F. F. & Gerson, S. (1975) Differential effects of serotonin on turning and stereotypy induced by apomorphine. Brain Research 93:158–63. [taPS]CrossRefGoogle ScholarPubMed
Ballenger, J. C., Goodwin, F. K., Major, L. F. & Brown, G. L. (1979) Alcohol and central serotonin metabolism in man. Archives of General Psychiatry 36:224–29. [FGG, taPS]CrossRefGoogle ScholarPubMed
Banki, C. M. (1978) Clinical observations with pizofifene in the treatment of nomigramous depressed women. Archives of Psychiatry and Neurological Sciences 225:67–72. [JFWD]Google ScholarPubMed
Banki, C. M. & Arato, M. (1983) Relationship between cerebrospinal fluid amine metabolites, neuroendocrine findings and personality dimensions (Marke-Nyman scale factors) in psychiatric patients. Acta Psychiatrica Scandinavica 67:272–80. [DS]CrossRefGoogle ScholarPubMed
Banki, C. M. & Molnar, G. (1981) Cerebrospinal fluid 5-hydroxyindoleacetic acid as an index of central serotonergic processes. Psychiatry Research 5:23–32. [taPS]CrossRefGoogle ScholarPubMed
Banki, C. M., Molnar, G. & Vojnik, M. (1981) Cerebrospinal fluid amine metabolites, tryptophan and clinical parameters in depression. 2. Psychopathological symptoms. Journal of Affective Disorders 3:91–99. [FGG, taPS]CrossRefGoogle ScholarPubMed
Barratt, E. S. (1959) Anxiety and impulsiveness related to psychomotor efficiency. Perceptual and Motor Skills 9:191–98. [ESB]CrossRefGoogle Scholar
Barratt, E. S. (1965) Factor analysis of some psychometric measures of impulsiveness and anxiety. Psychological Reports 16:547–54. [ESB]CrossRefGoogle ScholarPubMed
Barratt, E. S. (1983) The biological basis of impulsiveness: The significance of timing and rhythm disorders. Personality and Individual Differences 4:387–91. [ESB]CrossRefGoogle Scholar
Barratt, E. S. (in press) Impulsiveness defined within a systems model of personality. In: Advances in personality assessment, ed. Spielberger, C. & Butcher, J.. Erlbaum. [ESB]Google Scholar
Barratt, E. S. & Patton, J. H. (1983) Impulsivity: Cognitive, behavioral, and psychophysiological correlates. In: Biological bases of sensation-seeking, impulsivity, and anxiety, ed. Zuckerman, M.. Erlbaum. [ESB]Google Scholar
Barratt, E. S., Patton, J. H., Olsson, N. G. & Zucker, G. (1981) Impulsivity and paced tapping. Journal of Motor Behavior 13:286–300. [ESB]CrossRefGoogle ScholarPubMed
Barratt, E. S. & Pritchard, W. S. (in press) Impulsiveness subtraits: Arousal and information processing. In: Proceedings of the XXIII International Congress of Psychology: Motivation, emotion, and personality, ed. Spence, J. & Izard, C.. Elsevier. [ESB]Google Scholar
Barratt, E. S. & White, R. (1969) Impulsiveness and anxiety related to medical students' performance and attitudes. Journal of Medical Education 44:604–7. [ESB]Google ScholarPubMed
Beleslin, D. B. & Samardzic, R. (1979) Effects of parachlorophenylalanine and 5,6-dihydroxytryptamine on aggressive behavior evoked by cholinomimetics and anticholinesterases injected into the cerebral ventricles of conscious cats. Neuropharmacology 18:251–57. [taPS]CrossRefGoogle ScholarPubMed
Beninger, R. J. (1984) Effects of metergoline and quipazine on locomotor activity of rats in novel and familiar environments. Pharmacology, Biochemistry and Behavior 20:701–5. [taPS]Google ScholarPubMed
Beninger, R. J. & Phillips, A. G. (1979) Possible involvement of serotonin in extinction. Pharmacology, Biochemistry and Behavior 10:37–41. [taPS]Google ScholarPubMed
Birk, J. & Noble, R. G. (1981) Naloxone antagonism of diazepam-induced feeding in the Syrian hamster. Life Sciences 29:1125–31. [taPS]CrossRefGoogle ScholarPubMed
Bolles, R. C. & Fanselow, M. S. (1980) A perceptual-defensive-recuperative model of fear and pain. Behavioral and Brain Sciences 3:291–300. [FGG]CrossRefGoogle Scholar
Boulenger, J.-P., Uhde, T. W., Wolff, E. A. & Post, R. M. (1984) Increased sensitivity to caffeine in patients with panic disorders. Archives of General Psychiatry 41:1067–71. [SP]CrossRefGoogle ScholarPubMed
Brandáo, M. L., De Aguiar, J. C. & Graeff, F. G. (1982) GABA mediation of the anti-aversive action of minor tranquilizers. Pharmacology, Biochemistry and Behavior 16:397–402. [FGG]Google ScholarPubMed
Breese, G. R. & Cooper, B. R. (1975) Behavioral and biochemical interactions of 5,7-dihydroxytryptamine with various drugs when administered intracisternally to adult and developing rats. Brain Research 98:517–27. [taPS]CrossRefGoogle ScholarPubMed
Britton, K. T., Svensson, T., Schwarz, J., Bloom, F. E. & Koob, G. F. (1984) Dorsal noradrenergic bundle lesions fail to alter opiate withdrawal or suppression of opiate withdrawal by clonidine. Life Sciences 34:133–39. [JP]CrossRefGoogle ScholarPubMed
Broadhurst, P. L. (1960) Application of biometrical genetics to the inheritance of behaviour. In: Experiments in personality, vol. 1: Psychogenetics and psychopharmacology, ed. Eysenck, H. J.. Routledge & Kegan Paul. [LV]Google Scholar
Broca, P. (1861) Nouvelle observation d'aphémie produite par une lésion de la moitié postérieure des deuxième et troisième circonvolutions frontales. Bull. Soc. Anat. (Paris) 6:398. [ECA]Google Scholar
Broderick, P. & Lynch, V. (1982) Behavioral and biochemical changes induced by lithium and L-tryptophan in muricidal rats. Neuropharmacology 21:671–79. [taPS]CrossRefGoogle ScholarPubMed
Brodie, B. B. & Shore, P. (1957) A concept for a role of serotonin and norepinephrine as chemical mediators in the brain. Annals of the New York Academy of Sciences 66:631–42. [MAG, tarPS]CrossRefGoogle ScholarPubMed
Brody, J. F. (1970) Behavioral effects of serotonin depletion and p-chlorophenylalanine (a serotonin depletor) in rats. Psychopharmacology 17:14–33. [taPS, DW]CrossRefGoogle ScholarPubMed
Brown, G. L., Ebert, M. H., Goyer, P. F., Jimerson, D. C., Klein, W. J., Bunney, W. E. & Goodwin, F. C., (1982) Aggression, suicide and serotonin: Relationship to CSF amine metabolites. American Journal of Psychiatry 139:741–46. [taPS, DS, MZ]Google ScholarPubMed
Brown, G. L., Goodwin, F. K. & Bunney, W. E. (1982) Human aggression and suicide: Their relationship to neuropsychiatric diagnoses and serotonin metabolism. In: Advances in biochemical psychopharmacology, vol. 34: Serotonin in biological psychiatry, ed. Ho, B. T. et al. Raven Press. [taPS]Google Scholar
Brown, L., Rossellini, R. A., Samuels, O. B. & Riley, E. P. (1982) Evidence for a serotonergic mechanism of the learned helplessness phenomenon. Pharmacology, Biochemistry and Behavior 17:877–83. [taPS]Google ScholarPubMed
Bunney, B. S. & Aghajanian, G. K. (1976) The precise localization of nigral afferents in the rat as determined by a retrograde tracing technique. Brain Research 117:423–35. [rPS, DW]CrossRefGoogle ScholarPubMed
Campbell, A. B., Brown, R. M. & Seiden, L. S. (1971) A selective effect of p-chlorophenylalanine on fixed-ratio responding. Physiology and Behavior 7:853–57. [DW]CrossRefGoogle ScholarPubMed
Carlton, P. L. & Advokat, C. (1973) Attenuated habituation due to parachlorophenylalanine. Pharmacology, Biochemistry and Behavior 1:657–63. [taPS]Google ScholarPubMed
Carter, C. J. & Pycock, C. J. (1978) A study of the sites of interaction between dopamine and 5-hydroxytryptamine for the production of fluphenazine-induced catalepsy. Naunyn-Schmiedeberg's Archives of Pharmacology 304:135–39. [taPS]CrossRefGoogle ScholarPubMed
Carter, C. J. & Pycock, C. J. (1979) The effects of 5,7-dihydroxytryptamine lesions of extrapyramidal and mesolimbic sites on spontaneous motor behavior and amphetamine-induced stereotypy. Naunyn-Schmiedeberg's Archives of Pharmacology 308:51–54. [taPS, DW]CrossRefGoogle ScholarPubMed
Carter, C. J. & Pycock, C. J. (1980) 5,7-dihydroxytryptamine lesions of the amygdala reduce amphetamine and apomorphine-induced stereotyped behavior in the rat. Naunyn-Schmiedeberg's Archives of Pharmacology 312:235–38. [taPS, DW]CrossRefGoogle ScholarPubMed
Cerrito, F. & Raiteri, M. (1979) Serotonin release is modulated by presynaptic autoreceptors. European Journal of Pharmacology 57:427–30. [CHV]CrossRefGoogle ScholarPubMed
Ceulemans, D. (1985) The antagonism of serotonin receptors in the treatment of anxiety disorders. Presented at the Fifth European Winter Conference on Brain Research, Vars-les-Claux, France. [rPS]Google Scholar
Ceulemans, D., Hoppenbrouwers, M.-L., Gelders, Y. & Reyntjens, A. (1984) Serotonin blockade or benzodiazepine: What kind of anxiolysis? Abstracts of the 14th CINP Congress, Florence. [SP]Google Scholar
Chadwick, D., Jenner, P. & Reynolds, E. (1976) Amines, anticonvulsants, and epilepsy. In: Proceedings of the Seventh International Symposium on Epilepsy, ed. Dieter, J.. Georg Thieme. [ESB]Google Scholar
Charney, D. S., Heninger, G. R. & Redmond, D. E. (1983) Yohimbine-induced anxiety and increased noradrenergic function in humans: Effects of diazepam and clonidine. Life Sciences 33:19–29. [SP]CrossRefGoogle ScholarPubMed
Charney, D. S. & Redmond, D. E. Jr., (1983) Neurobiological mechanisms in human anxiety: Evidence supporting central noradrenergic hyperactivity. Neuropharmacology 22:1531–36. [LV]CrossRefGoogle ScholarPubMed
Childs, B. (1972) Genetic analysis of human behavior. Annual Reviews of Medicine 23:373–406. [LV]CrossRefGoogle ScholarPubMed
Christmas, A. J. & Maxwell, D. R. (1970) A comparison of the effects of some benzodiazepines and other drugs on aggressive and exploratory behavior in mice and rats. Neuropharmacology 9:17–29. [taPS]CrossRefGoogle ScholarPubMed
Clarke, A. & File, S. E. (1982) Selective neurotoxin lesions of the lateral septum: Changes in social and aggressive behaviors. Pharmacology, Biochemistry and Behavior 17:623–28. [taPS]Google Scholar
Commissaris, R. L., Lyness, W. H. & Rech, R. H. (1981) The effects of d-lysergic acid diethylamide (LSD), 2,5-dimethoxy-4-methylamphetamine (DOM), pentobarbital and methaqualone on punished responding in control and 5,7-DHT-treated rats. Pharmacology, Biochemistry and Behavior 14:617–23. [RLC]Google Scholar
Commissaris, R. L. & Rech, R. H. (1982) Interactions of metergoline with diazepam, quipazine, and hallucinogenic drugs on a conflict behavior in the rat. Psychopharmacology 76:282–85. [RLC, taPS]CrossRefGoogle ScholarPubMed
Cools, A. R. (1974) The transsynaptic relationship between dopamine and serotonin in the caudate nucleus of cats. Psychopharmacologia 36:229–37. [MAG]CrossRefGoogle ScholarPubMed
Copenhaver, J. H., Schalock, R. L. & Carver, M. J. (1978) Para-chloro-D, l-phenylalanine induced filicidal behavior in the female rat. Pharmacology, Biochemistry and Behavior 8:263–70. [taPS]Google ScholarPubMed
Corda, M. G., Ferrari, M., Guidotti, A., Konkel, D. & Costa, E. (1984) Isolation, purification and partial sequence of a neuropeptide (diazepam-binding inhibitor) percursor of an anxiogenic putative ligand for benzodiazepine recognition site. Neuroscicnce Letters 47:319–24. [LV]CrossRefGoogle Scholar
Costall, B., Fortune, D. H., Naylor, R. J., Marsden, C. D. & Pycock, C. J. (1975) Serotonergic involvement with neuroleptic catalepsy. Neuropharmacology 14:859–68. [taPS]CrossRefGoogle ScholarPubMed
Costall, B., Hui, S. C. G. & Naylor, R. J. (1979) The importance of serotonergic mechanisms for the induction of hyperactivity by amphetamine and its antagonism by intra-accumbens (3,4-dihydroxy-phenylamino)-2-imidazoline (DPI). Neuropharmacology 18:605–9. [taPS]CrossRefGoogle ScholarPubMed
Costall, B., Naylor, R. J., Cannon, J. G. & Lee, T. (1977) Differentiation of the dopamine mechanisms mediating stereotyped behaviour and hyperactivity in the nucleus accumbens and caudate-putamen. Journal of Pharmacy and Pharmacology 29:337–42. [taPS]CrossRefGoogle ScholarPubMed
Costall, B., Naylor, R. J., Marsden, C. D. & Pycock, C. J. (1976) Serotonergic modulation of the dopamine response from the nucleus accumbens. Journal of Pharmacy and Pharmacology 28:523–26. [taPS]CrossRefGoogle Scholar
Crowley, T. J., Stynes, A. J., Hydinger, M. & Kaufman, I. C. (1974) Ethanol, methamphetamine, pentobarbital, morphine, and monkey social behavior. Archives of General Psychiatry 31:829–38. [MJR]CrossRefGoogle ScholarPubMed
Dantzer, R. (1977) Behavioral effects of benzodiazepines: A review. Biobehavioral Reviews 1:71–86. [SP, taPS]CrossRefGoogle Scholar
Dantzer, R., Mormede, P. & Favre, B. (1976) Fear-dependent variations in continuous avoidance behaviour of pigs. 1. Lack of effect of diazepam on performance of discriminative fear conditioning. Psychopharmacology 49:75–78. [SP]CrossRefGoogle ScholarPubMed
Davis, M., Astrachan, D. I. & Kass, E. (1980) Excitatory and inhibitory effects of serotonin on sensorimotor reactivity measured with acoustic startle. Science 209:521–23. [taPS]CrossRefGoogle ScholarPubMed
Davis, M., Kehne, J. H., Commissaris, R. L. & Geyer, M. A. (1984) Effects of hallucinogens on unconditioned behaviors. In: Hallucinogens: Neurochemical, behavioral and clinical perspectives, ed. Jacobs, B. L.. Raven Press. [MAG]Google Scholar
Davis, N. M. & Gray, J. A. (1983) Brain 5-hydroxytryptamine and learned resistance to punishment. Behavioural Brain Research 8:129–37. [taPS]CrossRefGoogle ScholarPubMed
Dawson, T. M., Gehlert, D. R., Snowhill, E. W. & Wamsley, J. (1985) Quantitative autoradiographic evidence for axonal transport of imipramine receptors in the central nervous system of the rat. Neuroscience Letters 55:261–66. [JP]CrossRefGoogle ScholarPubMed
Deakin, J. F. W. (1983) Roles of serotonergic systems in escape, avoidance and other behaviours. In: Theory in psychopharmacology, vol. 2. ed. Cooper, S. J.. Academic Press. [JFWD]Google Scholar
Deakin, J. F. W., File, S. E., Hyde, J. R. G. & MacLeod, N. K. (1979) Ascending 5-HT pathways and behavioral habituation. Pharmacology, Biochemistry and Behavior 10:687–94. [JFWD, taPS]Google Scholar
Delgado, J. M. R. (1975) Inhibitory systems and emotions. In: Emotions: Their parameters and measurements, ed. Levi, L.. Raven Press. [LV]Google Scholar
Delgado, J. M. R., Grau, G., Delgado-Garcia, J. M., & Rodero, J. M. (1976) Effects of diazepam related to social hierarchy in rhesus monkeys. Neuropharmacology 15:409–14. [MJR]CrossRefGoogle ScholarPubMed
De Molina, A. F. & Hunsperger, R. W. (1959) Central representation of affective reactions in forebrain and brain stem: Electrical stimulation of amygdala, stria terminalis, and adjacent structures. Journal of Physiology 145:251–65. [FGG]CrossRefGoogle Scholar
Di Mascio, A. (1973) The effects of benzodiazepines on aggression: Reduced or increased? In: The benzodiazepines, ed. Garattini, S., Mussini, E. & Randall, L. O.. Raven Press. [taPS]Google ScholarPubMed
Dray, A., Davies, J., Oakley, N. R., Tongroach, P. & Vellucci, S. (1978) The dorsal and medial raphe projections to the substantia nigra in the rat: Electrophysiological biochemical and behavioral observations. Brain Research 151:431–42. [taPS]CrossRefGoogle Scholar
Easton, J. D. & Sherman, D. G. (1976) Somatic anxiety attacks and propanolol. Archives of Neurology 33:689–91. [LV]CrossRefGoogle Scholar
Edman, G., Åsberg, M., Levander, S. & Schalling, D. (1985) Skin conductance habituation and CSF 5-HIAA in suicidal patients. Archives of General Psychiatry (in press). [DS]Google Scholar
Edmondson, H. D., Roscoe, B. & Vickers, M. D. (1972) Biochemical evidence of anxiety in dental patients. British Medical Journal 4:7–9. [LV]CrossRefGoogle ScholarPubMed
Ellison, G. D. (1977) Animal models of psychopathology: The low-norepinephrine and low-serotonin rat. American Psychologist 32:1036–45. [MZ]CrossRefGoogle ScholarPubMed
Engel, J. A., Hjorth, S., Svensson, K., Carlsson, A. & Liljequist, S. (1984) Anticonflict effect of the putative serotonin receptor agonist 8-hydroxy-2 (di-n-propylamino) tetralin (8-OH-DPAT). European Journal of Pharmacology 105:365–68. [SP, LV]CrossRefGoogle ScholarPubMed
Evans, L., Best, J., Moore, G. & Cox, J. (1980) Zimelidine, a serotonin uptake blocker in the treatment of phobic anxiety. Progress in Neuro-Psychopharmacology 4:75–79. [FGG, taPS]CrossRefGoogle ScholarPubMed
Eyzenck, H. J. & Eysenck, S. B. G. (1976) Psychoticism as a dimension of personality. Hodder and Stoughton. [DS, MZ]Google Scholar
Eysenck, S. B. G. & Eysenck, H. J. (1977) The place of impulsiveness in a dimensional system of personality description. British Journal of Clinical Psychology 16:57–68. [ESB, MZ]Google Scholar
Fechter, L. D. (1974) Central serotonin involvement in the elaboration of the startle reaction in rats. Pharmacology, Biochemistry and Behavior 2:161–71. [taPS]Google ScholarPubMed
Feldman, R. S. & Smith, W. E. (1978) Chlordiazepoxide-fluoxetine interactions on food intake in free-feeding rats. Pharmacology, Biochemistry and Behavior 8:749–52. [taPS]Google ScholarPubMed
Ferrero, P., Guidotti, A., Conti-Tronconi, B. & Costa, E. (1984) A brain octadecaneuropeptide generated by tryptic digestion of DBI (diazepam binding inhibitor) functions as a procondict ligand of benzodiazepine recognition sites. Neuropharmacology 227:1359–62. [JP]CrossRefGoogle Scholar
Fibiger, H. C. & Miller, J. J. (1977) An anatomical and electrophysiological investigation of the serotonergic projection from the dorsal raphe nucleus to the substantia nigra. Neuroscience 2:975–87. [rPS, DW]CrossRefGoogle Scholar
File, S. E. (1977) Effects of parachlorophenylalanine and amphetamine on habituation of orienting. Pharmacology, Biochemistry and Behavior 6:151–56. [taPS]Google Scholar
File, S. E. (1980) Naloxone reduces social and exploratory activity in the rat. Psychopharmacology 71:41–44. [SP]CrossRefGoogle ScholarPubMed
File, S. E. & Hyde, J. R. G. (1979) A test of anxiety that distinguishes between the actions of benzodiazepines and those of other minor tranquilisers and of stimulants. Pharmacology, Biochemistry and Behavior 11:65–69. [SP]Google ScholarPubMed
File, S. E., Hyde, J. R. & MacLeod, N. C. (1979) 5,7-dihydroxytryptamine lesions of dorsal and median raphe nuclei and performance in the social interaction test of anxiety and in a home-cage aggression test. Journal of Affective Disorders 1:115–22. [taPS]CrossRefGoogle Scholar
Fink, H. & Oelssner, W. (1981) LSD, mescaline and serotonin injected into the medial raphe nucleus potentiate apomorphine hypermotility. European Journal of Pharmacology 75:289–96. [taPS]CrossRefGoogle ScholarPubMed
Fontaine, R., Chouinard, G. & Iny, L. (1985) An open clinical trial of zimelidine in the treatment of obsessive compulsive disorder. Current Therapeutic Research 37:326–32. [rPS]Google Scholar
Fowles, D. C. (1980) The three arousal model: Implications of Gray's two-factor learning theory for heart rate, electrodermal activity, and psychopathy. Psychophysiology 17:87–104. [DS]CrossRefGoogle ScholarPubMed
Fry, B. & Ciarlone, A. (1981) Effects of phenytoin on mouse cerebellar 5-hydroxytryptamine and norepinephrine. Neuropsychopharmacology 20:623–25. [ESB]Google ScholarPubMed
Gabay, S. (1981) Serotonergic-dopaminergic interactions: Implications for hyperkinetic disorders. In: Serotonin: Current aspects of neurochemistry and function, ed. Haber, B., Gabay, S., Issidorides, M. R. & Alivisatos, S. G. A.. Plenum. [MAG]Google Scholar
Gardner, D. L. & Cowdry, R. W. (1985) Alprazolam-induced dyscontrol in borderline personality disorder. American Journal of Psychiatry 142:98–100. [taPS]Google ScholarPubMed
Gately, P. F., Segal, D. S. & Geyer, M. A. (in press) The behavioral effects of depletions of brain serotonin induced by 5,7-dyhydroxytryptamine vary with time after administration. Behavioral and Neural Biology. [MAG]Google Scholar
Geller, I. & Seifter, J. (1960) The effects of meprobamate, barbiturate, d-amphetamine and promazine on experimentally induced conflict in the rat. Psychopharmacology 1:482–92. [taPS]CrossRefGoogle Scholar
Gerson, S. C. & Baldessarini, R. J. (1980) Motor effects of serotonin in the central nervous system. Life Sciences 27:1435–51. [taPS, CHV]CrossRefGoogle ScholarPubMed
Geyer, M. A. (1978) Heterogenous functions of discrete serotonergic pathways in brain. In: New vistas in the biochemistry of mental disorders, ed. Usdin, E. & Mandell, A. J.. Marcel Dekker. [MAG]Google Scholar
Geyer, M. A., Petersen, L. R. & Rose, G. J. (1980) Effects of serotonergic lesions on investigatory responding by rats in a hole-board. Behavioral and Neural Biology 30:160–77. [MAG]CrossRefGoogle Scholar
Geyer, M. A., Puerto, A., Menkes, D. B., Segal, D. S. & Mandel, A. (1976) Behavioral studies following lesions of the mesolimbic and mesostriatal serotonergic pathways. Brain Research 106:257–70. [taPS]CrossRefGoogle ScholarPubMed
Geyer, M. A. & Segal, D. S. (1974) Shock-induced aggression: Opposite effects of intraventricularly infused dopamine and norepinephrine. Behavioral Biology 10:99–104. [MAG]CrossRefGoogle ScholarPubMed
Giambalvo, C. T. & Snodgrass, S. R. (1978) Biochemical and behavioral effects of serotonin neurotoxins on the nigrostriatal dopamine system: Comparison of injection sites. Brain Research 152:555–66. [taPS]CrossRefGoogle ScholarPubMed
Glogers, S., Grunhaus, L., Birmacher, B. & Troudart, T. (1981) Treatment of spontaneous panic attacks with chlomipramine. American Journal of Psychiatry 138:1215–17. [FGG]Google Scholar
Goodwin, G. M. & Green, A. R. (1985) A behavioural and biochemical study in mice and rats of putative selective agonists and antagonists for 5-HT and 5-HT receptors. British Journal of Pharmacology 84:743–53. [SP]CrossRefGoogle Scholar
Graeff, F. G. (1974) Tryptamine antagonists and punished behavior. Journal of Pharmacology and Experimental Therapeutics 189:344–50. [FGG]Google ScholarPubMed
Graeff, F. G. (1976) Effect of cyproheptadine and combinations of cyproheptadine and amphetamine on intermittently reinforced lever pressing in rats. Psychopharmacology 50:65–71. [FGG]CrossRefGoogle ScholarPubMed
Graeff, F. G. (1981) Minor tranquilizers and brain defense systems. Brazilian Journal of Medical and Biological Research 14:239–65. [FGG]Google ScholarPubMed
Graeff, F. G. (1984) The anti-aversive action of minor tranquilizers. Trends in Pharmacological Sciences 5:230–33. [FGG]CrossRefGoogle Scholar
Graeff, F. G. (in press) The anti-aversive action of drugs. In: Advances in behavioral pharmacology, Vol. 5, ed. Thompson, T., Dews, P. B. & Barrett, J.. Erlbaum. [FGG]Google Scholar
Graeff, F. G. & Rawlins, J. N. P. (1980) Dorsal periaqueductal gray punishment, septal lesions and the mode of action of minor tranquilizers. Pharmacology, Biochemistry and Behavior 12:41–45. [FGG]Google ScholarPubMed
Graeff, F. G. & Schoenfeld, R. I. (1970) Tryptaminergic mechanisms in punished behavior. Journal of Pharmacology and Experimental Therapeutics 173:277–83. [FGG]Google Scholar
Graeff, F. G. & Silveira Filho, N. G. (1978) Behavioral inhibition induced by electrical stimulation of the median raphe nucleus of the rat. Physiology and Behavior 21:477–84. [taPS]CrossRefGoogle ScholarPubMed
Graeff, F. G., Zuardi, A. W., Giglio, J. S., Lima Filho, E. C. & Karniol, I. G. (1985) Effect of metergoline on human anxiety. Psychopharmacology 86:334–38. [FGG]CrossRefGoogle ScholarPubMed
Grahame-Smith, D. G. (1971) Studies in vivo on the relationship between brain tryptophan, brain 5-HT synthesis and hyperactivity in rats treated with a monoamine oxidase inhibitor and L-tryptophan. Journal of Neurochemistry 18:1053–66. [CHV]CrossRefGoogle ScholarPubMed
Gray, J. A. (1977) Drug effects on fear and frustration: Possible limbic sites of action of minor tranquilisers. In: Handbook of Psychopharmacology, vol. 8: Drugs, neurotransmitters and behaviour, ed. Iversen, L. L., Iversen, S. D. & Snyder, S. H.. Plenum Press. [SP]Google Scholar
Gray, J. A. (1982) Précis of The neuropsychology of anxiety: An enquiry into the functions of the septo-hippocampal system. Behavioral and Brain Sciences 5:469–534. [FGG, taPS, DS, MZ]CrossRefGoogle Scholar
Green, A. & Grahame-Smith, D. (1975) The effect of diphenylhydantoin on brain 5-hydroxytryptamine metabolism and function. Neuropharmacology 14:107–13. [ESB]CrossRefGoogle ScholarPubMed
Guidotti, A., Forchetti, C. M., Corda, M. G., Konkel, D., Bennett, C. D. & Costa, E. (1983) Isolation, characterization, and purification to homogeneity of an endogenous polypeptide with agonistic action on benzodiazepine receptor. Proceedings of the National Academy of Sciences of the U.S.A. 80:3531–35. [LV]CrossRefGoogle Scholar
Hahn, R. A., Hynes, M. D. & Fuller, R. W. (1982) Apomorphine-induced aggression in rats chronically treated with oral clonidine: Modulation by central serotonergic mechanisms. Journal of Pharmacology and Experimental Therapeutics 220:389–93. [taPS]Google ScholarPubMed
Haigler, H. J. & Aghajanian, G. K. (1974) Peripheral serotonin antagonists: Failure to antagonize serotonin in brain areas receiving a prominent serotonergic input. Journal of Neural Transmission 35:257–73. [CHV]CrossRefGoogle ScholarPubMed
Hamon, M., Bourgoin, S., El Mestikawy, S. & Goetz, C. (1984) Central serotonin receptors. In: Handbook of neurochemistry, vol. 6, ed. Lajtha, A.. Plenum Press. [rPS]Google Scholar
Harvey, J. A., Schlosberg, J. A. & Yunger, L. M. (1975) Behavioral correlates of serotonin depletion. Federation Proceedings 36:1796–1801. [taPS]Google Scholar
Herve, D., Simon, H., Blanc, G., LeMoal, M., Glowinski, J. & Tassin, J. P. (1981) Opposite changes in dopamine utilisation in the nucleus accumbens and the frontal cortex after electrolytic lesion of the median raphe in the rat. Brain Research 216:422–28. [taPS]CrossRefGoogle ScholarPubMed
Hindley, S. W., Paterson, I. A. & Roberts, M. H. T. (1984) Microinjection of methyl-B-carboline-3-carboxylate into nucleus raphe dorsalis reduces social interaction in the rat. British Journal of Pharmacology 81:27p. [JFWD]Google Scholar
Hobbs, A., Paterson, I. A. & Roberts, M. H. T. (1984) The effect on social interaction of microinjections of R. 15–1788 into the nucleus raphe dorsalis of the rat. British Journal of Pharmacology 82:241p. [JFWD]Google Scholar
Hoehn-Saric, R. (1982) Neurotransmitters in anxiety. Archives of General Psychiatry 39:735–44. [JP]CrossRefGoogle ScholarPubMed
Hole, K., Espolin, G. E. & Berge, O. G. (1977) 5,7-dihydroxytryptamine lesions of the ascending 5-hydroxytryptaminergic pathways: Habitation, motor activity and agonistic behavior. Pharmacology, Biochemistry and Behavior 7:205–10. [taPS]Google Scholar
Hole, K., Fuxe, K. & Jonsson, G. (1976) Behavioral effects of 5,7-dihydroxytryptamine lesions of ascending 5-hydroxytryptamine pathways. Brain Research 107:385–99. [DW]CrossRefGoogle ScholarPubMed
Hole, K. & Lorens, S. A. (1975) Response to electric shock in rats: Effects of selective midbrain raphe lesions. Pharmacology, Biochemistry and Behavior 3:95–102. [taPS]Google ScholarPubMed
Huang, Y. H., Redmond, D. E. Jr., Snyder, D. R. & Maas, J. W. (1976) Loss of fear following bilateral lesions of the locus coeruleus in the monkey. Neurosciences Abstracts 2:573. [LV]Google Scholar
Hunkeler, W., Moehler, H., Pieri, L., Polc, P., Bonetti, E. P., Cumin, R., Schaffner, R. & Haefely, W. (1981) Selective antagonists of benzodiazepines. Nature 290:514–16. [RLC, taPS]CrossRefGoogle ScholarPubMed
Insel, T. R., Ninan, P. T., Aloi, J., Jimerson, D. C., Skolnick, P. & Paul, S. M. (1984) A benzodiazepine receptor-mediated model of anxiety. Archives of General Psychiatry 41:741–50. [MJR]CrossRefGoogle ScholarPubMed
Iversen, S. D. (1983) Where in the brain do benzodiazepines act? In: Benzodiazepines divided, ed. Trimble, M. R.. Wiley. [rPS]Google Scholar
Jackson, H. (1873) On the anatomical and physiological localisation of movements in the brain. Lancet (01 18, 1873, p. 62). [ECA]Google Scholar
Jacobs, B. L. & Cohen, A. (1976) Differential behavioral effects of lesions of the median or dorsal raphe nuclei in rats: Open field and pain-elicited aggression. Journal of Comparative and Physiological Psychology 90:102–8. [MAG]CrossRefGoogle ScholarPubMed
Jacobs, B. L., Foote, S. L. & Bloom, F. E. (1978) Differential projection of neurons within the dorsal raphe nucleus of the rat: A horseradish peroxydase (HRP) study. Brain Research 147:149–53. [taPS]CrossRefGoogle Scholar
Jacobs, B. L., Heym, J. & Steinfels, G. F. (1984) Physiological and behavioral analysis of raphe unit activity. In: Handbook of psychopharmacology, vol. 18, Drugs, neurotransmitters and behavior, ed. Iversen, L. L., Iversen, S. D. & Snyder, S. H.. Plenum Press. [JP]Google Scholar
Jacobs, B. L., Trimbach, C., Eubanks, E. & Trulson, M. (1975) Hippocampal mediation of raphe lesion- and pCPA-induced hyperactivity in the rat. Brain Research 94:253–61. [taPS, DW]CrossRefGoogle ScholarPubMed
Jacobs, B. L., Wise, W. D. & Taylor, K. M. (1974) Differential behavioral and neurochemical effects following lesions of the dorsal or median raphe nuclei in rat. Brain Research 79:353–61. [MAG]CrossRefGoogle ScholarPubMed
Janssen, P. A. J. (1983) The psychopharmacological profiles and the therapeutic properties in psychiatric practice of a series of potent and selective 5-HT2 receptor blockers (abstract). VII World Congress of Psychiatry, Vienna. [JFWD]Google Scholar
Johnstone, F. C., Owens, D. G. C., Frith, C. D., McPherson, K., Dowie, C., Riley, G. & Gold, A. (1980) Neurotic illness and its response to anxiolytic and antidepressant treatment. Psychological Medicine 10:321–28. [JFWD]CrossRefGoogle ScholarPubMed
Jones, D. L., Mogenson, G. J. & Wu, M. (1981) Injections of dopaminergic, cholinergic, serotonergic and GABAergic drugs into the nucleus accumbens: Effects on locomotor activity in the rat. Neuropharmacology 20:29–37. [taPS]CrossRefGoogle Scholar
Jung, R. (1949) Hirnelektrische Untersuchungen über den Electrokrampf: Die Erregungsabläufe in corticalen and subcorticalen Himregionen, bei Katze und Hund. Archiv für Psychiatrie und Nervenkrankheiten 183:206–44. [LV]CrossRefGoogle Scholar
Kahn, M. W. & Kirk, W. E. (1968) The concepts of aggression: A review and reformulation. Psychological Record 18:559–73. [LV]CrossRefGoogle Scholar
Kandel, E. R. (1983) From metapsychology to molecular biology: Explorations into the nature of anxiety. American Journal of Psychiatry 140:1277–93. [PRS, taPS]Google ScholarPubMed
Kantak, K. M., Hegstrand, L. R. & Eichelman, B. (1981a) Facilitation of shock-induced fighting following intraventricular 5,7-dihydroxytryptamine and 6-hydroxy DOPA. Psychopharmacology 74:157–60. [taPS]CrossRefGoogle Scholar
Kantak, K. M., Hegstrand, L. R. & Eichelman, B. (1981b) Dietary tryptophan reversal of septal lesion and 5,7-DHT lesion elicited by shock-induced fighting. Pharmacology, Biochemistry and Behavior 15:343–50. [taPS]Google ScholarPubMed
Karch, F. E. (1979) Rage reaction associated with clorazepate dipotassium. Annals of Internal Medicine 91:61–62. [taPS]CrossRefGoogle ScholarPubMed
Karli, P. (1981) Conceptual and methodological problems associated with the study of brain mechanisms underlying aggressive behaviour. In: The biology of aggression, ed. Brain, P. F. & Benton, D.. Sijthoff and Noordhoff. [PK]Google Scholar
Kataoka, Y., Shibata, K., Gomita, Y. & Ueki, S. (1982) The mammillary body is a potential site of antianxiety action of benzodiazepines. Brain Research 241:374–77. [LV]CrossRefGoogle ScholarPubMed
Katz, R. J. (1980) Role of serotonergic mechanisms in animal models of predation. Progress in Neuro-Psychopharmacology 4:219–31. [taPS]CrossRefGoogle ScholarPubMed
Kaye, W. H., Ebert, M. H., Gwirtsman, H. E. & Weiss, S. R. (1984) Differences in brain serotonergic metabolism between nonbulimic and bulimic patients with anorexia nervosa. American Journal of Psychiatry 141:1598–1601. [taPS]Google ScholarPubMed
Kilts, C. D., Commissaris, R. L., Cordon, J. J. & Rech, R. H. (1982) Lack of central 5-hydroxytryptamine influence on the antieonflict activity of diazepam. Psychopharmacology 78:156–64. [RLC, taPS]CrossRefGoogle ScholarPubMed
Kilts, C. D., Commissaris, R. L. & Rech, R. H. (1981) Comparison of anti-conflict drug effects in three experimental animal models of anxiety. Psychopharmacology 74:290–96. [RLC, taPS]CrossRefGoogle ScholarPubMed
Kiser, R. S. Jr., German, D. C. & Lebovitz, R. M. (1978) Serotonergic reduction of dorsal central gray area stimulation-produced aversion. Pharmacology, Biochemistry and Behavior 9:27–31. [FGG]Google ScholarPubMed
Kiser, R. S. Jr., & Lebovitz, R. M. (1975) Monoaminergic mechanisms in eversive brain stimulation. Physiology and Behavior 15:47–53. [FGG]CrossRefGoogle Scholar
Klein, F. G. (1981) Anxiety reconceptualized. In Anxiety: New research and changing perspectives, ed. Klein, D. F. & Rabkin, J.. Raven Press. [JP]Google Scholar
Kohler, C. & Lorens, S. A. (1978) Open-field activity and avoidance behavior following serotonin depletion: A comparison of the effects of parachlorophenylalanine and electrolytic midbrain raphe lesions. Pharmacology, Biochemistry and Behavior 8:223–33. [taPS, DW]Google ScholarPubMed
Kostowski, W., Gumulka, W. & Czlonkowski, A. (1972) Reduced cataleptogenic effects of some neuroleptics in rats with lesioned midbrain raphe and pretreated with parachlorophenylalanine. Brain Research 48:443–46. [taPS]CrossRefGoogle Scholar
Kozak, W., Valzelli, L. & Garattini, S. (1984) Anxiolytic activity on locus coeruleus-mediated suppression of muricidal aggression. European Journal of Pharmacology 105:323–26. [LV]CrossRefGoogle ScholarPubMed
Kuczenski, R. (1979) Effects of para-chlorophenylalanine on amphetamine and haloperidol-induced changes in striatal dopamine turn-over. Brain Research 164:217–25. [taPS]CrossRefGoogle Scholar
Leaf, R. C., Wnek, D. J., Gay, P. E., Corcia, R. M. & Lamon, S. (1975) Chlordiazepoxide and diazepam induced mouse killing by rats. Psychopharmacologia (Berlin) 44:23–28. [taPS]CrossRefGoogle ScholarPubMed
Lehmann, J. (1982) Tryptophan deficiency stupor—A new psychiatric syndrome. Acta Psychiatrica Scandinavica: Supplementum 300, 65:1–57. [CHV]Google Scholar
Leroux, A. C. & Myers, R. D. (1975) Action of serotonin microinjected into hypothalamic sites at which electrical stimulation produced eversive response in the rat. Physiology and Behavior 14:501–5. [FGG]CrossRefGoogle Scholar
Lidberg, L., Åsberg, M. & Sundquist-Stensman, U. B. (1984) 5-hydroxyindoleacetic acid levels in attempted suicides who have killed their children. Lancet 2:928. [taPS]CrossRefGoogle ScholarPubMed
Liebman, J. M. (1985) Anxiety, anxiolytics and brain stimulation reinforcement. Neuroscience and Biobehavioral Review 9:75–86. [FGG]CrossRefGoogle ScholarPubMed
Liebowitz, M. R., Fyer, A. J., McGrath, P. & Klein, D. F. (1981) Clonidine treatment of panic disorder. Psychopharmacology Bulletin 17:122–23. [LV]Google Scholar
Linnoila, M., Virkkunen, M., Scheinin, M., Nuutila, A., Rimon, R. & Goodwin, F. K. (1983) Low cerebrospinal fluid 5-hydroxyindoleacetic acid concentration differentiates impulsive from nonimpulsive violent behavior. Life Sciences 33:2609–14. [taPS, DS]CrossRefGoogle ScholarPubMed
Lippa, A. S., Coupet, J., Greenblatt, E. N., Klepner, C. A. & Beer, B. (1979) A synthetic non-benzodiazepine ligand for benzodiazepine receptors: A probe for investigating neuronal substrates of anxiety. Pharmacology, Biochemistry and Behavior 11:99–106. [LV]Google ScholarPubMed
Lister, R. G. & File, S. E. (1983) Changes in regional concentrations in the rat brain of 5-hydroxytryptamine and 5-hydroxyindoleacetic acid during the development of tolerance to the sedative action of chlordiazepoxide. Journal of Pharmacy and Pharmacology 35:601–03. [taPS]CrossRefGoogle Scholar
Lloyd, K. G., Farley, I. J., Deck, J. H. N. & Hornykiewicz, O. (1974) Serotonin and 5-hydroxyindoleacetic acid in discrete areas of the brainstem of suicide victims and control patients. In: Serotonin: New vistas, ed. Costa, E., Gessa, G. L. & Sandler, M.. Raven Press. [rPS]Google Scholar
Long, J. B., Youngblood, W. Y. & Kizer, J. S. (1983) Regional differences in the response of serotonergic neurons in rat CNS to drugs. European Journal of Pharmacology 88:89–97. [taPS]CrossRefGoogle ScholarPubMed
Lorden, J. F. & Margules, D. L. (1977) Enhancement of conditioned taste aversions by lesions of the midbrain raphe nuclei that deplete serotonin. Physiological Psychology 5:273–79. [DW]CrossRefGoogle Scholar
Lorden, J. F. & Oltmans, G. A. (1978) Alteration of the characteristics of learned taste aversion by manipulation of serotonin levels in the rat. Pharmacology, Biochemistry and Behavior 8:13–18. [DW]Google ScholarPubMed
Lorens, S. A. (1978) Some behavioral effects of serotonin depletion depend on method: A comparison of 5,7-dihydroxytryptamine, p-chlorophenylalanine, p-chloroamphetamine and electrolytic raphe lesions. Annals of the New York Academy of Sciences 305:522–55. [MAG, taPS]CrossRefGoogle Scholar
Lorens, S. A., Guldberg, H. C., Hole, K., Kohler, C. & Srebro, B. (1976) Activity, avoidance learning and regional 5-hydroxytryptamine following intra-brain stem 5,7-dihydroxytryptamine and electrolytic midbrain raphe lesions in the rat. Brain Research 108:97–113. [taPS]CrossRefGoogle ScholarPubMed
Lykken, D. (1957) A study of anxiety in the sociopathic personality. Journal of Abnormal and Social Psychology 55:6–10. [DS]CrossRefGoogle ScholarPubMed
Lynch, M. A., Lindsay, J. & Ounsted, C. (1975) Tranquilizers causing aggression. British Medical Journal 5952:260. [taPS]Google Scholar
Lyness, W. H. & Moore, K. E. (1981) Destruction of 5-hydroxytryptaminergic neurons and the dynamics of dopamine in nucleus accumbens-septi and other forebrain regions of the rat. Neuropharmacology 20:327–34. [taPS]CrossRefGoogle ScholarPubMed
McElroy, J. F., Dupont, A. F. & Feldman, R. S. (1982) The effects of fenfluramine and fluoxetine on the acquisition of a conditioned avoidance response in rats. Psychopharmacology 77:356–59. [taPS]CrossRefGoogle ScholarPubMed
McGuire, M. T., Raleigh, M. J. & Brammer, G. L. (1982) Sociopharmacology. Annual Review of Pharmacology and Toxicology 22:643–61. [MJR]CrossRefGoogle ScholarPubMed
Mackenzie, R. G., Hoebel, B. G., Norelli, C. & Trulson, M. E. (1978) Increased tilt-cage activity after serotonin depletion by 5,7-dihydroxytryptamine. Neuropharmacology 17:957–63. [taPS, DW]CrossRefGoogle ScholarPubMed
Margules, D. L. & Stein, L. (1967) Neuroleptics vs. tranquilizers: Evidence from animal behavior studies of mode and site of action. In: Neuropsychopharmacology, ed. Brill, H., Cole, J. O., Deniker, P., Hippius, H. & Bradley, P. B.. Exerpta Medica. [taPS]Google Scholar
Marks, P., O'Brien, M. & Paxinos, G. (1977) 5,7-DHT-induced muricide: Inhibition as a result of exposure of rats to mice. Brain Research 135:383–88. [taPS]CrossRefGoogle ScholarPubMed
Marsden, C. A. & Curzon, G. (1976) Studies on the behavioral effects of tryptophan and p-chlorophenylalanine. Neuropharmacology 15:165–71. [DW]CrossRefGoogle Scholar
Mele, P. C. & Caplan, M. A. (1980) Effects of cinanserin and p-chlorophenylalanine and their interaction with d-amphetamine on DRL performance in rats. Pharmacology, Biochemistry and Behavior 12:883–91. [taPS]Google ScholarPubMed
Messing, R. B., Phebus, L., Fisher, L. & Lythe, L. D. (1975) Analgesic effect of fluoxetine HCL (Lilly 110140), a specific uptake inhibitor for serotonergic neurons. Psychopharmacology Communications 1:511–21. [FGG]Google Scholar
Miczek, K. A. & Gold, L. H. (1983) d-amphetamine in squirrel monkeys of different social status: Effects on social and agonistic behavior, locomotion, and stereotypies. Psychopharmacology 81:183–90. [MJR, taPS]CrossRefGoogle ScholarPubMed
Modigh, K. (1972) Central and peripheral effects of 5-hydroxytryptophan on motor activity in mice. Psychopharmacologia (Berlin) 23:48–54. [CHV]CrossRefGoogle ScholarPubMed
Modigh, K. (1973) Effects of L-tryptophan on motor activity in mice. Psychopharmacologia (Berlin) 30:123–34. [CHV]CrossRefGoogle ScholarPubMed
Mokler, D. J. & Rech, R. H. (1983) Diazepam, pentobarbital and methaqualone effects on several behaviors in the rat and antagonism by Ro 15–1788. In: Committee on Problems of Drug dependence. NIDA Research Monograph Series 43:203–209. [RLC]Google ScholarPubMed
Montgomery, S. A., Roy, D. & Montgomery, D. B. (1983) The prevention of recurrent suicidal acts. British Journal of Clinical Pharmacology 15:183S–188S. [taPS]CrossRefGoogle ScholarPubMed
Montgomery, S. A., Roy, D. & Montgomery, D. B. (1984) HVA in the CSF: A marker for suicidal acts? In: Biological psychiatry: New prospects, ed. Burrows, G. D., Norman, T. R. & Maguire, K. P.. J. Libbey. [taPS]Google Scholar
Morato de Carvalho, S., De Aguiar, J. C. & Graeff, F. G. (1981) Effects of minor tranquilizers, tryptamine antagonists and amphetamine on behavior punished by brain stimulation. Pharmacology, Biochemistry and Behavior 15:351–56. [FCC, taPS]Google ScholarPubMed
Mühlbauer, H. D. & Müller-Oerlinghausen, B. (1985) Fenfluramine Stimulation of serum cortisol in patients with major affective disorders and healthy controls: Further evidence for central serotonergic action of lithium in man. Journal of Neural Transmission 61:81–94. [ESB]CrossRefGoogle ScholarPubMed
Müller-Oerlinghausen, B. (1985) Lithium long-term treatment—Does it act via serotonin? Pharmacopsychiatry 18:214–17. [ESB]CrossRefGoogle ScholarPubMed
Murphy, D. L., Campbell, I. C. & Costa, J. L. (1978) The brain serotonergic systems in the affective disorders. Progress in Neuro-Psychopharmacology 3:1–31. [MZ]Google Scholar
Naranjo, C. A., Sellers, E. M., Roach, C. A., Woodley, D. V., Sanchez-Craig, M. & Sykora, K. (1984) Zimidíne-induced variations in alcohol intake by nondepressed heavy drinkers. Clinical Pharmacology and Therapeutics 35:374–81. [FGG]CrossRefGoogle ScholarPubMed
Nation, J. R. & Boyagian, L. G. (1981) Appetitive performance following exposure to inescapable shocks of short or long duration. American Journal of Psychology 96:605–17. [taPS]CrossRefGoogle Scholar
Nestoros, J. N. (1984) GABAergic mechanisms and anxiety: An overview and a new neurophysiological model. Canadian Journal of Psychiatry 29:520–29. [LV]CrossRefGoogle Scholar
Niehoff, D. L. & Kuhar, M. J. (1983) Benzodiazepine receptors: Localization in rat. Journal of Neuroscience 3:2091–97. [LV]CrossRefGoogle ScholarPubMed
Ninan, P. T., Van Kammen, D. P., Scheinin, M., Linnoila, M., Bunney, W. E. & Goodwin, F. K. (1984) CSF 5-hydroxyindoleacetic acid in suicidal schizophrenic patients. American Journal of Psychiatry 141:566–69. [rPS]Google ScholarPubMed
Nolan, W. A., & Parkes, M. W. (1973) The effects of benzodiazepines on the behaviour of mice on a hole-board. Psychopharmacologia 29:277–88. [taPS]CrossRefGoogle ScholarPubMed
Ogren, S. O. (1985) Central serotonin neurons in avoidance learning: Interactions with noradrenaline and dopamine neurons. Pharmacology, Biochemistry and Behavior 23:107–23. [rPS]Google Scholar
Ogren, S. O., Fuxe, K., Archer, T., Hall, H., Holm, A. L. & Koehler, C. (1981) Studies on the role of central 5-HT neurons in avoidance learning: A behavioral and biochemical analysis. Advances in Experimental Medical Biology 133:681–705. [taPS]CrossRefGoogle ScholarPubMed
Olds, M. E. & Olds, J. (1962) Approach-escape interactions in rat brain. American Journal of Physiology 203:803–10. [FGG]CrossRefGoogle ScholarPubMed
Olsen, R. W. (1982) Drug interactions at the GABA receptor-ionophore complex. Annual Review of Pharmacology and Toxicology 22:245–77. [RLC]CrossRefGoogle ScholarPubMed
Oreland, L., Wiberg, A., Åsberg, M., Träskman, L., Sjostrand, L., Thoren, P., Bertilsson, L. & Tybring, G. (1982) Platelet MAO activity and monoamine metabolites in cerebrospinal fluid in depressed and suicidal patients and in healthy controls. Psychiatry Research 4:21–29. [taPS]CrossRefGoogle Scholar
Panksepp, J. (1982) Toward a general psychobiological theory of emotions. Behavioral and Brain Sciences 5:407–67. [JP, FGG, MZ]CrossRefGoogle Scholar
Panksepp, J. (1986) The neurochemistry of behavior. Annual Review of Psychology 37:77–107. [JP]CrossRefGoogle ScholarPubMed
Panksepp, J., Bean, N. J., Bishop, P., Vilberg, T. & Sahley, T. L. (1980) Opioid blockade and social comfort in chicks. Pharmacology, Biochemistry and Behavior 13:673–83. [JP]Google ScholarPubMed
Panksepp, J., Gandelman, R. & Trowill, J. (1970) Modulation of hypothalamic self-stimulation and escape behavior by chlordiazepoxide. Physiology and Behavior 5:965–69. [JP]CrossRefGoogle ScholarPubMed
Panksepp, J., Meeker, R. & Bean, N. J. (1980) The neurochemical control of crying. Pharmacology, Biochemistry and Behavior 12:437–43. [JP]Google ScholarPubMed
Pappas, B., Vogel, R. A., Wilson, J. H., Mueller, R. & Breese, G. (1981) Drug alterations of punished responding after chlordiazepoxide: Possible screen for agents useful in minimal brain dysfunction. Pharmacology, Biochemistry and Behavior 15:743–46. [taPS]Google ScholarPubMed
Parent, A., Descarries, L. & Beaudet, A. (1981) Organization of ascending serotonergic systems in the adult rat brain. A radio autographic study after intraventricular administration of (3H) 5-hydroxytryptamine. Neuroscience 6:115–38. [taPS]CrossRefGoogle Scholar
Pellow, S., Chopin, P. & File, S. E. (1985) Are the anxiogenic effects of yohimbine mediated by its action at benzodiazepine receptors? Neuroscience Letters 55:5–9. [SP]CrossRefGoogle ScholarPubMed
Pellow, S., Chopin, P., File, S. E. & Briley, M. (1985) Validation of open-closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. Journal of Neuroscience Methods (in press). [SP]CrossRefGoogle Scholar
Pellow, S. & File, S. E. (1984) Multiple sites of action for anxiogenic drugs: Behavioural, electrophysiological and biochemical correlations. Psychopharmacology 83:304–15. [SP]CrossRefGoogle ScholarPubMed
Penfield, W. (1947) Some observations on the cerebral cortex of man. Proceedings of the Royal Society (London) B134:329–47. [ECA]Google Scholar
Petersen, E. N. & Buus Lassen, J. (1981) A water lick conflict paradigm using drug experienced rats. Psychopharmacology 75:236–39. [taPS]CrossRefGoogle ScholarPubMed
Petersen, E. N. & Scheel-Kruger, J. (1984) Anticonflict effects of 5-HT antagonists by intra-amygdaloid injection. Abstracts of the 14th CINP Congress, Florence, P-339. [SP]Google Scholar
Petersen, E. N. & Scheel-Kruger, J. (1985) 5-HT receptor mediated anticonflict effects in a benzodiazepine sensitive part of the amygdala. Presented at the Fifth European Winter Conference on Brain Research, Vars-les-Claux, France. [rPS]Google Scholar
Petty, F. & Sherman, A. D. (1980) Regional aspects of the prevention of learned helplessness by desipramine. Life Sciences 26:1447–52. [taPS]CrossRefGoogle ScholarPubMed
Petty, F. & Sherman, A. D. (1983) Learned helplessness induction decreases in vivo cortical serotonin release. Pharmacology, Biochemistry and Behavior 18:649–50. [taPS]Google ScholarPubMed
Porsolt, R. D., Bertin, A., Blavet, N., Danieland, M. & Jalfre, M. (1979) Immobility induced by forced swimming in rats: Effects of agents which modify central catecholamine and serotonin activity. European Journal of Pharmacology 57:201–10. [taPS]CrossRefGoogle ScholarPubMed
Post, R. M., Kotin, J., Goodwin, F. K. & Gordon, E. K. (1973) Psychomotor activity and cerebrospinal fluid amine metabolites in affective illness. American Journal of Psychiatry 130:67–72. [CHV]CrossRefGoogle ScholarPubMed
Poyen, B., Rodor, F., Jouve-Bestagne, M. H., Galland, M. C., Lots, R. & Jouglard, J. (1982). Amnésie et troubles comportementaux d'apparence délictuelle survenus après ingestion de benzodiazépines. Thérapie 37:675–78. [taPS]Google ScholarPubMed
Przewlocka, B., Stala, L. & Scheel-Kruger, J. (1979) Evidence that GABA in the nucleus dorsalis raphe induces stimulation of locomotor activity and eating behavior. Life Sciences 25:937–46. [taPS]CrossRefGoogle ScholarPubMed
Pucilowski, O., Plaznik, A. & Kostowski, W. (1985) Aggressive behavior inhibition by serotonin and quipazine injected into the amygdala in the rat. Behavioral and Neural Biology 43:58–68. [LV]CrossRefGoogle ScholarPubMed
Raleigh, M. J., Brammer, G. L. & McGuire, M. T. (1983) Male dominance, serotonergic systems, and the behavioral and physiological effects of drugs in vervet monkeys (Cercopithecus aethiops sabaeus). In: Ethnopharmacology: Primate models of neuropsychiatric disorders, ed. Mìczek, K. A.. Alan R. Liss. [MJR]Google Scholar
Raleigh, M. J., McGuire, M. T., Brammer, G. L. & Yuwiler, A. (1984) Social and environmental influences on blood serotonin concentrations in monkeys. Archives of General Psychiatry 41:405–10. [taPS]CrossRefGoogle ScholarPubMed
Rebec, G. V., Alloway, K. D. & Curtis, S. D. (1981) Apparent serotonergic modulation of the dose-dependent biphasic response of neostriatal neurons produced by d-amphetamine. Brain Research 210:277–89. [taPS]CrossRefGoogle ScholarPubMed
Redmond, D. E. Jr., (1977) Alterations in the function of the nucleus locus coeruleus: A possible model for studies of anxiety. In: Animal models in psychiatry and neurology, ed. Hanin, I. & Usdin, E.. Pergamon Press. [LV]Google Scholar
Redmond, D. E. Jr., (1979) New and old evidence for the involvement of a brain norepinephrine system in anxiety. In: The pehnomenology and treatment of anxiety, ed. Fann, W. E.. Spectrum Press. [LV]Google Scholar
Redmond, D. E. Jr., & Huang, Y. H. (1979) New evidence for a locus coeruleus-norepinephrine connection with anxiety. Life Sciences 25:2149–62. [JP, MJR, LV]CrossRefGoogle ScholarPubMed
Rescorla, R. A. (1969) Pavlovian conditioned inhibition. Psychological Bulletin 72:77–94. [PRS]CrossRefGoogle Scholar
Robbins, T. W. (1976) Relationship between reward-enhancing and stereotypical effects of psychomotor stimulant drugs. Nature 264:57–59. [taPS]CrossRefGoogle ScholarPubMed
Robinson, T. E. & Vanderwolf, C. H. (1978) Electrical stimulation of the brainstem in freely moving rats. 2. Effects on hippocampal and neocortical electrical activity and relations to behavior. Experimental Neurology 61:485–515. [CHV]CrossRefGoogle Scholar
Robinson, T. N. & Zahn, T. P. (1985) Psychoticism and arousal: Possible evidence for a linkage of P and psychopathy. Personality and Individual Differences 6:47–66. [DS]CrossRefGoogle Scholar
Rosen, A. J. & Freedman, P. E. (1974) The effects of p-chloroamphetamine on instrumental conditioning in the rat. Neuropharmacology 13:585–90. [taPS]CrossRefGoogle ScholarPubMed
Rossi, J. III, Sahley, T. L. & Panksepp, J. (1983) The role of brain norepinephrine in clonidine suppression of isolation-induced distress in the domestic chick. Psychopharmacology 79:338–39. [JP]CrossRefGoogle ScholarPubMed
Ryan, H. F., Merrill, F. B., Scott, G. E., Krebs, R. & Thompson, B. L. (1968) Increase in suicidal thoughts and tendencies: Association with diazepam therapy. Journal of the American Medical Association 203:135–37. [taPS]Google ScholarPubMed
Rydin, E., Schalling, D. & Åsberg, M. (1982) Rorschach ratings in depressed and suicidal patients with low levels of 5-hydroxyindoleacetic acid in cerebrospinal fluid. Psychiatry Research 7:229–43. [FGG, tarPS, DS]CrossRefGoogle ScholarPubMed
Sainati, S. M. & Lorens, S. A. (1982) Intra-raphe muscimol induced hyperactivity depends on ascending serotonin projections. Pharmacology, Biochemistry and Behavior 17:973–86. [JP, taPS]Google ScholarPubMed
Sainati, S. M. & Lorens, S. A. (1983) Intra-raphe benzodiazepines enhance rat locomotor activity: Interactions with GABA. Pharmacology, Biochemistry and Behavior 18:407–14. [taPS]Google ScholarPubMed
Sanger, D. J. & Blackman, D. E. (1976) Effects of chlordiazepoxide, ripazepam and d-amphetamine on conditioned acceleration timing behaviour in rats. Psychopharmacology 48:209–15. [taPS]CrossRefGoogle ScholarPubMed
Sassenrath, E. N. (1983) Studies in adaptability: Experimental, environmental, and pharmacological influences. In: Hormones, drugs, and social behavior in primates, ed. Steklis, H. D. & Kling, A. S.. Spectrum. [MJR]Google Scholar
Schalling, D. (1978) Psychopathy-related personality variables and the psychophysiology of socialization. In: Psychopathic behaviour: Approaches to research, ed. Hare, R. D. & Schalling, D.. Wiley. [DS]Google Scholar
Schalling, D., Åsberg, M. & Edman, G. (1984) Personality and SCF monoamine metabolites. Department of Psychiatry and Psychology, Karolinska Hospital and the Department of Psychology, University of Stockholm. [rPS, DS, MZ]Google Scholar
Schalling, D., Gronholm, B. & Åsberg, M. (1975) Components of state and trait anxiety as related to personality and arousal. In: Emotions: Their parameters and measurement, ed. Levi, L.. Raven Press. [DS]Google Scholar
Scheel-Kruger, J. & Petersen, E. N. (1982) Anticonflict effect of the benzodiazepines mediated by a GABA-ergic mechanism in the amygdala. European Journal of Pharmacology 82:115–17. [rPS]CrossRefGoogle Scholar
Schenberg, L. C. & Graeff, F. G. (1978) Role of periaqueductal gray substance in the antianxiety action of benzodiazepines. Pharmacology, Biochemistry and Behavior 9:287–95. [FGG]Google ScholarPubMed
Schenberg, L. C., De Aguiar, J. C. & Graeff, F. G. (1983) GABA modulation of the defense reaction induced by brain electrical stimulation. Pharmacology, Biochemistry and Behavior 31:429–37. [FGG]Google ScholarPubMed
Schlesinger, K., Schreiber, R. A. & Pryor, G. T. (1968) Effects of p-chlorophenylalanine on conditioned avoidance learning. Psychonomic Science 11:225–26. [taPS]CrossRefGoogle Scholar
Schoenfeld, R. I. (1976) Lysergic acid diethylamide- and mescaline-induced attenuation of the effect of punishment in the rat. Science 192:801–3. [taPS]CrossRefGoogle ScholarPubMed
Schütz, M. T. B., De Aguiar, J. C. & Graeff, F. G. (1985) Anti-aversive role of serotonin in the dorsal periaqueductal grey matter. Psychopharmacology 85:340–45. [FGG]CrossRefGoogle ScholarPubMed
Sechenov, I. M. (1878) Elements of thought. Rept. ed. 1943, USSR Academy Scientific Press. [LV]Google Scholar
Sedvall, G., Firo, B., Gullberg, B., Nyback, H., Wiesel, F. A. & Wode-Helgodt, B. (1980) Relationships in healthy volunteers between concentrations of monoamine metabolites in cerebrospinal fluid and family history of psychiatric morbidity. British Journal of Psychiatry 136:366–70. [taPS]CrossRefGoogle ScholarPubMed
Segal, D. S. (1976) Differential effects of para-chlorophenylalanine on amphetamine induced locomotion and stereotypy. Brain Research 116:267–76. [taPS]CrossRefGoogle ScholarPubMed
Sepinwall, J. & Cook, L. (1978) Behavioral pharmacology of antianxiety drugs. In: Handbook of psychopharmacology, vol. 13, ed. Iversen, L. L., Iversen, S. D. & Snyder, S. H.. Plenum Press. [taPS]Google Scholar
Sewell, R. G., Gallus, J. A., Cault, F. P. & Cleary, J. P. (1982) p-chlorophenylalanine effects on shock-induced attack and pressing responses in rats. Pharmacology, Biochemistry and Behavior 17:945–50. [taPS]Google ScholarPubMed
Shephard, R. A. & Broadhurst, P. L. (1982) Effects of diazepam and of serotonin agonists on hyponeophagia in rats. Neuropharmacology 21:337–40. [taPS]CrossRefGoogle ScholarPubMed
Shephard, R. A., Buxton, D. A. & Broadhurst, P. L. (1982a) Beta-adrenoreceptor antagonists may attenuate hyponeophagia in the rat through a serotonergic mechanism. Pharmacology, Biochemistry and Behavior 16:741–44. [taPS]Google Scholar
Shephard, R. A., Buxton, D. A. & Broadhurst, P. L. (1982b) Drug interactions do not support reduction in serotonin turnover as the mechanism of action of benzodiazepines. Neuropharmacology 21:1027–32. [taPS]CrossRefGoogle Scholar
Shibata, K., Kataoka, Y., Gomita, Y. & Ueki, S. (1982) Localization of the site of the anticonflict action of benzodiazepines in the amygdaloid nucleus of rats. Brain Research 234:442–46. [LV]CrossRefGoogle ScholarPubMed
Simon, P., & Soubrié, P. (1979) Behavioral studies to differentiate anxiolytic and sedative activity of tranquilizing drugs. In: Modern problems in pharmacopsychiatry, ed. Boissier, J. R.. Karger. [tarPS]Google Scholar
Smith, G. J. W. & Carlsson, I. (1983) Creativity and anxiety: An experimental study. Scandinavian Journal of Psychology 24:107–15. [LV]CrossRefGoogle ScholarPubMed
Smith, R. F. (1979) Attenuation of septal lesion-induced shuttlebox facilitation by 5-hydroxytryptophan. Physiological Psychology 7:419–21. [taPS]CrossRefGoogle Scholar
Snyder, S. H. (1980) Brain peptides as neurotransmitters. Science 209:976–83. [PRS]CrossRefGoogle ScholarPubMed
Solomon, P. R., Kiney, C. & Scott, D. R. (1978) Disruption of latent inhibition following systemic administration of parachlorophenylalanine (pCPA) Physiology and Behavior 20:265–71. [taPS]CrossRefGoogle ScholarPubMed
Solomon, P. R., Nichols, G. L., Kiernan, J. M. III, Kamer, R. S. & Kaplan, L. J. (1980) Differential effects of lesions of the medial and dorsal raphe of the rat: Latent inhibition and septohippocampal serotonin levels. Journal of Comparative and Physiological Psychology 94:145–54. [PRS, DW]CrossRefGoogle ScholarPubMed
Soubrié, P., Blas, C., Ferron, A. & Glowinski, J. (1983) Chlordiazepoxide reduces in vivo serotonin release in the basal ganglia of “encéphale isolé” but not of anaesthetized cats: Evidence for a dorsal raphé site of action. Journal of Pharmacology and Experimental Therapeutics 226:526–32. [taPS]Google Scholar
Soubrié, P., Reisine, T. D. & Glowinski, J. (1984) Functional aspects of serotonin transmission in the basal ganglia: A review and an in vivo approach using the push-pull cannula technique. Neuroscience 13:605–25. [rPS]CrossRefGoogle Scholar
Soubrié, P., Thiébot, M. H., Simon, P. & Boissier, J. R. (1977) Effets des benzodiazépines sur les phénomènes d'inhibition qui controlent les comportements exploratoires et le recueil de l'information chez le rat. Journal de Pharmacologie (Paris) 8:393–403. [taPS]Google Scholar
Srebro, B. & Lorens, S. A. (1975) Behavioral effects of selective midbrain raphe lesions in the rat. Brain Research 89:303–25. [taPS]CrossRefGoogle ScholarPubMed
Standal, J. T. (1977) Pizotifen as an antidepressant. Acta Psychiatrica Scandinavica 56:276–79. [JFWD]CrossRefGoogle ScholarPubMed
Stanley, M. & Mann, J. (1983) Increased serotonin-2 binding sites in frontal cortex of suicide victims. Lancet 1:214–16. [taPS]CrossRefGoogle ScholarPubMed
Stanley, M., Träskman-Bendz, L. & Dorovini-Zis, K. (1984) Correlations between aminergic metabolites simultaneously obtained from samples of CSF and brain. Presented at 23rd Annual Meeting of the American College of Neuropsychopharmacology, San Juan, Puerto Rico. [fPS]Google Scholar
Stanley, M., Virgilio, J. & Gershon, S. (1982) Tritiated imipramine binding sites are decreased in the frontal cortex of suicides. Science 216:1337–39. [tarPS]CrossRefGoogle ScholarPubMed
Steinbusch, H. W. M. (1981) Distribution of serotonin immunoreactivity in the central nervous system of the rat: Cells bodies and terminals Neuroscience 6:557–618. [taPS]CrossRefGoogle ScholarPubMed
Steklis, H. D., Linn, G. S., Howard, S. M., Kling, A. & Tiger, L. (1983) Progesterone and socio-sexual behavior in stumptailed macaques (Macaca arctoides): Hormonal and socio-environmental interactions. In: Hormones, drugs, and behavior in primates, ed. Steklis, H. D. & Kling, A. S.. Spectrum Publications. [MJR]Google Scholar
Stevens, D. A., Fechter, L. D. & Resnick, O. (1969) The effects of p-chlorophenylalanine, a depletor of brain serotonin, on behavior. 2. Retardation of passive avoidance learning. Life Sciences 8:379–85. [taPS]CrossRefGoogle Scholar
Stevens, D. A., Resnick, O. & Krus, D. M. (1967) The effects of p-chlorophenylalanine, a depletor of brain serotonin, on behavior. 1. Facilitation of discrimination learning. Life Sciences 6:2215–20. [taPS, DW]CrossRefGoogle Scholar
Stricker, E. M. & Zigmond, M. J. (1976) Recovery of function after damage to central catecholamine-containing neurons: A neurochemical model for the lateral hypothalamic syndrome. Progress in Psychobiology and Physiological Psychology 6:121–88. [CHV]Google Scholar
Stroebel, C. F., Szarek, B. L. & Glueck, B. C. (1984) Use of chlomipramine in treatment of obsessive-compulsive symptomatology. Journal of Clinical Psychopharmacology 4:98–100. [FGG]CrossRefGoogle ScholarPubMed
Sweeney, D. R., Maas, J. W. & Heninger, G. R. (1978) State anxiety, physical activity, and urinary 3-methoxy-4-hydroxyphenethylene glycol excretion. Archives of General Psychiatry 35:1418–23. [LV]CrossRefGoogle ScholarPubMed
Swonger, A. K. & Rech, R. H. (1972) Serotonergic and cholinergic involvement in habituation of activity and spontaneous alternation of rats in a Y maze. Journal of Comparative Neurology and Psychology 81:509–22. [taPS]Google Scholar
Tallman, J. F. & Gallager, D. W. (1985) The GABA-ergic system: A locus of benzodiazepine action. Annual Review of Neuroscience 8:21–44. [RLC, JP]CrossRefGoogle ScholarPubMed
Tassin, J. P., Reibaud, M., Blanc, G., Studler, J. M. & Glowinski, J. (1984) Regulation of the sensitivity of D1 receptors in the prefrontal cortex and the nucleus accumbens by nondopaminergic pathways. In: Catecholamines: Neuropharmacology and central nervous system, Theoretical aspects, eds. Usdin, E., Carlsson, A., Dahlstrom, A. & Engel, J.A. R. Liss. [taPS]Google Scholar
Taylor, D. P., Allen, L. E., Becker, J. A., Crane, M., Hyslop, D. K. & Riblet, L. A. (1984) Changing concepts of the biochemical action of the anxioselective drug, buspirone. Drug Development Research 4:95–108. [SP]CrossRefGoogle Scholar
Tenen, S. S. (1967) The effects of p-chlorophenylalanine, a serotonin depletor, on avoidance acquisition, pain sensitivity and related behavior in the rat. Psychopharmacohgy 10:204–19. [taPS]CrossRefGoogle ScholarPubMed
Thiébot, M. H., Hamon, M. & Soubrié, P. (1982) Attenuation of induced-anxiety in rats by chlordiazepoxide: Role of raphe dorsalis benzodiazepine binding sites and serotonergic neurons. Neuroscience 7:2287–94. [JWFD, taPS]CrossRefGoogle Scholar
Thiébot, M. H., Hamon, M. & Soubrié, P. (1983) The involvement of nigral serotonin innervation in the control of punishment-induced behavioral inhibition in rats. Pharmacology, Biochemistry and Behavior 19:225–29. [MAG, taPS]Google ScholarPubMed
Thiébot, M. H., LeBihan, C., Soubrié, P. & Simon, P. (1985) Benzodiazepines reduce the tolerance to reward delay in rats. Psychopharmacology 87:147–52. [taPS]CrossRefGoogle Scholar
Thiébot, M. H., Soubrié, P., Hamon, M. & Simon, P. (1984) Evidence against the involvement of serotonergic neurons in the anti-punishment activity of diazepam in the rat. Psychopharmacology 52:355–59. [JFWD, FGG, taPS]CrossRefGoogle Scholar
Thiébot, M. H., Soubrié, P., Pays, P. & Simon, P. (1984) Benzodiazepines and waiting capacity for food-reward in rats. Abstracts of the 14th CINP Congress, Florence, F-308. [SP]Google Scholar
Thiébot, M. H., Soubrié, P. & Simon, P. (1985) Is delay of reward mediated by shock-avoidance behavior a critical target for antipunishment effects of diazepam in rats? Psychopharmacology 87:473–79. [rPS]CrossRefGoogle ScholarPubMed
Thompson, R. F. (1976) The search for the engram. American Psychologist 31:209–27. [PRS]CrossRefGoogle ScholarPubMed
Thorén, P., Åsberg, M., Bertilsson, L., Mellstrom, B., Sjoquist, F. & Tráskman, L. (1980) Clomipramine treatment of obsessive-compulsive disorder. 2. Biochemical aspects. Archives of General Psychiatry 37:1289–94. [taPS]CrossRefGoogle Scholar
Thornton, E. W., & Goudie, A. J. (1978) Evidence for the role of serotonin in the inhibition of specific motor responses. Psychopharmacology 60:73–79. [taPS]CrossRefGoogle ScholarPubMed
Tobach, E. (1969) Experimental approaches to the study of emotional behavior. Annals of the New York Academy of Sciences 3:621–1121. [LV]Google Scholar
Torrubia, R. (1984) Personality, anxiety and susceptibility to punishment: An application of Gray's theory to humans. Doctoral thesis, Autonomous University of Barcelona, Department of Medical Psychology. [DS]Google Scholar
Torrubia, R. & Tobena, A. (1984) A scale for the assessment of susceptibility to punishment as a measure of anxiety: Preliminary results. Personality and Individual Differences 5:371–75. [DS]CrossRefGoogle Scholar
Treiser, S. L., Cascio, C., O'Donohue, S., Jacobowitz, D. & Kellar, K. (1981) Lithium increases serotonin release and decreases serotonin receptors in the hippocampus. Science 213:1529–31. [ESB]CrossRefGoogle ScholarPubMed
Treit, D. (1985) Evidence that tolerance develops to the anxiolytic effect of diazepam in rats. Pharmacology Biochemistry and Behavior 22:383–87. [rPS]CrossRefGoogle Scholar
Trulson, M. E. & Jacobs, B. L. (1979a) Raphe unit activity in freely moving cats: Correlation with level of behavioral arousal. Brain Research 163:135–50. [taPS, CHV]CrossRefGoogle ScholarPubMed
Trulson, M. E. & Jacobs, B. L. (1979b) Long-term amphetamine treatment decreases brain serotonin metabolism: Implications for theories of schizophrenia. Science 205:1295–98. [PRS]CrossRefGoogle ScholarPubMed
Trulson, M. E., Preussler, D. W., Howell, G. A. & Frederickson, C. J. (1982) Raphe unit activity in freely moving cats: Effects of benzodiazepines. Neuropharmacology 21:1050–82. [taPS]Google ScholarPubMed
Ts'o, T. O. T. & Chenoweth, M. B. (1976) Comparison between chronic chlordiazepoxide treatment and shock removal in a conflict situation in rats. Neuropharmacology 15:99–101. [rPS]CrossRefGoogle Scholar
Tye, N. C., Everitt, B. J. & Iversen, S. D. (1977) 5-hydroxytryptamine and punishment. Nature (London) 268:741–43. [taPS]CrossRefGoogle ScholarPubMed
Tye, N. C., Iversen, S. D. & Green, A. R. (1979) The effects of benzodiazepines and serotonergic manipulations on punished responding. Neuropharmacology 18:689–95. [taPS]CrossRefGoogle ScholarPubMed
Ursin, H. (1971) Limbic control of emotional behavior. In: Proceedings second conference on psychosurgery, ed. Hitchcock, E. R. & Vernet, K.. Thomas. [LV]Google Scholar
Valzelli, L. (1980) An approach to neuroanatomical and neurochemical psychophysiology. C. G. Edizioni Medico Scientifiche. [LV]Google Scholar
Valzelli, L. (1984) Reflections on experimental and human pathology of aggression. Progress in Neuro-Psychopharmacology and Biological Psychiatry 8:311–25. [LV]CrossRefGoogle ScholarPubMed
Valzelli, L. & Bernasconi, S. (1979) Aggressiveness by isolation and brain serotonin turnover changes in different strains of mice. Neuropsychobiology 5:129–35. [taPS]CrossRefGoogle ScholarPubMed
Valzelli, L., Bernasconi, S. & Dalessandro, M. (1981) Effect of tryptophan administration on spontaneous and p-CPA-induced muricidal aggression in laboratory rats. Pharmacological Research Communications 13:891–97. [LV]CrossRefGoogle ScholarPubMed
Vanderwolf, C. H. (1984) Aminergic control of the electrocorticogram. In: Neurobiology of the trace amines, ed. Bouiton, A. A., Baker, G. B., Dewhurst, W. G. & Sandler, M.. Humana Press. [CHV]Google Scholar
Van Praag, H. M. (1983). CSF 5-HIAA and suicide in non-depressed schizophrenics. Lancet 1:977–78. [taPS]CrossRefGoogle Scholar
Vergnes, M. (1978) Interspecific aggression and reactivity in rats: Effects of selective raphe lesions and additional olfactory bulb ablation. Aggressive Behavior 4:207–18. [PK]3.0.CO;2-L>CrossRefGoogle Scholar
Vergnes, M., Bandler, R. & Kempf, E. (1980) Muricide induced by diagonal band damage: Role of 5-HT pathways. Brain Research 185:203–7. [taPS]CrossRefGoogle ScholarPubMed
Vergnes, M. & Kempf, E. (1982) Effect of hypothalamic injections of 5,7-dihydroxytryptamine on elicitation of mouse-killing in rats. Behavioural Brain Research 5:387–97. [PK]CrossRefGoogle ScholarPubMed
Vergnes, M. & Penot, C. (1976) Effets comportementaux des lésions du raphé chez des rats privés du septum. Brain Research 115:154–59. [PK]CrossRefGoogle ScholarPubMed
Vergnes, M., Penot, C., Kempf, E. & Mack, G. (1977) Lesion selective des neurones serotoninergiques au raphé par la 5,7-dihydroxytryptamine: Effets sur le comportement d'agression inter-spécifique du rat. Brain Research 133:167–71. [taPS]CrossRefGoogle Scholar
Vorhees, C. V. (1979) Facilitation of avoidance acquisition in rats produced by p-chlorophenylalanine or p-chloroamphetamine. Pharmacology, Biochemistry and Behavior 10:569–76. [taPS]Google ScholarPubMed
Vorhees, C. V., Schaeffer, G. J. & Barrett, R. J. (1975) p-chloroamphetamine: Behavioral effects of reduced cerebral serotonin in rats. Pharmacology, Biochemistry and Behavior 3:279–84. [taPS, DW]Google ScholarPubMed
Waddington, J. L. & Crow, T. J. (1979) Rotational responses to serotonergic and dopaminergic agonists after unilateral dihydroxytryptamine lesions of the medial forebrain bundle: Co-operative interactions of serotonin and dopamine in neostriatum. Life Science 25:1307–14. [taPS]CrossRefGoogle ScholarPubMed
Waddington, J. L. & Olley, J. E. (1977) Dissociation of antipunishment activities of chlordiazepoxide and atropine using two heterogeneous passive avoidance tasks. Psychopharmacology 52:93–96. [rPS]CrossRefGoogle ScholarPubMed
Waelkens, J., Hoppenbrouwers, M. L., Gelders, Y. & Reyntjens, A. (1982) Pirenperone, a selective serotonin 5-HT-2 receptor blocking agent in the treatment of anxiety and tension states: A placebo-controlled double-blind cross-over study. Proceedings of the 13th CINP Congress, Jerusalem, p. 741. [taPS]Google Scholar
Waldbillig, R. J. (1979). The role of the dorsal and median raphe in the inhibition of muricide. Brain Research 160:341–46. [taPS]CrossRefGoogle ScholarPubMed
Waldmeier, P. C. & Delini-Stula, A. A. (1979) Serotonin-dopamine interactions in the nigrostriatal system. European Journal of Pharmacology 55:363–73. [MAG]CrossRefGoogle ScholarPubMed
Weiss, J. A., Goodman, P. A., Losito, B. G., Corrigan, S., Charry, J. M. & Bailey, W. H. (1981) Behavioral depression produced by an uncontrollable Stressor: Relationship to norepinephrine, dopamine and serotonin levels in various regions of rat brain. Brain Research Review 3:167–205. [taPS]CrossRefGoogle Scholar
Westenberg, H. G., Van Praag, H. M., de Jong, J. T. & Thijssen, J. H. (1982) Postsynaptic serotonergic activity in depressive patients: Evaluation of the neuroendocrine strategy. Psychiatry Research 7:361–71. [taPS]CrossRefGoogle ScholarPubMed
Wilbur, R. & Kulik, F. A. (1981) Gray's cybernetic theory of anxiety. Lancet 2(8250):803. [taPS]CrossRefGoogle ScholarPubMed
Wilcock, J. (1968) Gene action and behavior: An evaluation of major gene pleiotropism. Psychological Bulletin 72:1–29. [LV]CrossRefGoogle Scholar
Williams, J. H. & Azmitia, E. C. (1981) Hippocampal serotonin re-uptake and nocturnal locomotor activity after microinjections of 5,7-DHT in the fornix-fimbria. Brain Research 207:95–107. [taPS, DW]CrossRefGoogle ScholarPubMed
Wing, L. L. & Wirtshafter, D. (1982) Impaired DRL performance with electrolytic median raphe lesions. Abstracts of the 12th Annual Meeting of the Society for Neuroscience, p. 309. [taPS]Google Scholar
Wirtshafter, D. & Asin, K. E. (1982) Evidence that electrolytic median raphe lesions increase locomotion but not exploration. Physiology and Behavior 28:749–54. [MAG, taPS]CrossRefGoogle Scholar
Wirtshafter, D., Montana, W. & Asin, K. E. (1983) Stimulus discriminability and learning following electrolytic median raphe lesions. Society for Neuroscience Abstracts 9:1173. [DW]Google Scholar
Wise, C. D., Berger, B. D. & Stein, L. (1970) Brain serotonin and conditioned fear. Proccdings of the 78th Annual Convention, American Psychological Association, 821–22. [taPS]CrossRefGoogle Scholar
Wise, C. D., Berger, B. D. & Stein, L. (1972) Benzodiazepines: Anxiety-reducing activity by reduction of serotonin turnover in the brain. Science 117:180–83. [taPS]CrossRefGoogle Scholar
Wise, C. D., Berger, B. D. & Stein, L. (1973) Evidence of alpha-noradrenergic reward receptors and serotonergic punishment receptors in the rat brain. Biological Psychiatry 6:3–21. [taPS]Google Scholar
Wise, R. A. (1982) Neuroleptics and operant behavior: The anhedonia hypothesis. Behavioral and Brain Sciences 5:39–87. [taPS]CrossRefGoogle Scholar
Wurtman, R. J. & Wurtman, J. J. (1983) Nutrients, neurotransmitter synthesis and the control of food intake. Psychiatric Annals 13:854–57. [taPS]CrossRefGoogle Scholar