Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-02T16:30:25.711Z Has data issue: false hasContentIssue false

The command neuron concept: Good in theory, difficult to justify in practice

Published online by Cambridge University Press:  04 February 2010

Janis C. Weeks
Affiliation:
Department of Entomological Sciences, University of California, Berkeley, Calif. 94720

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Continuing Commentary
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aljure, E., Day, J. W. & Bennett, M. V. L. (1980) Postsynaptic depression of Mauthner cell-mediated startle reflex, a possible contributor to habituation. Brain Research 188:261–68. [JTH]CrossRefGoogle ScholarPubMed
Altman, J. S. & Kien, J. (in press) Functional organisation of the suboesophageal ganglion in insects and other arthropods. In: Arthropod brain; Its evolution, development structure and functions, ed. Gupta, A. P.. John Wiley. [JK]Google Scholar
Arch, S., Earley, P. & Smock, T. (1976) Biochemical isolation and physiological identification of the egg-laying hormone from Aplysia californica. Journal of General Physiology 68:197210. [TS]CrossRefGoogle ScholarPubMed
Arch, S., Lupatkin, J., Smock, T. & Beard, M. (1980) Evidence for an exocrine function of the Aplysia atrial gland. Journal of Comparative Physiology 141:131–37. [TS]CrossRefGoogle Scholar
Arch, S. & Smock, T. (1977) Egg-laying behavior in Aplysia californica. Behavioral Biology 19:4554. [TS]CrossRefGoogle Scholar
Arch, S., Smock, T. & Earley, P. (1976) Precursor and product processing in the bag cell neurons uf Aplysia californica. Journal of General Physiology 68:211–25. [TS]CrossRefGoogle Scholar
Arch, S., Smock, T., Gurvis, G. & McCarthy, C. (1978) Atrial gland induction of the egg-laying response of Aplysia californica. Journal of Comparative Physiology 128:6770. [TS]CrossRefGoogle Scholar
Benjamin, P. R., McCrohan, C. R. & Rose, R. M. (1981) Higher order interneurons which initiate and modulate feeding in the pond snail, Lymnaea stagnalis. In: Neurobiology of invertebrates, mechanisms of integration, ed. Salanki, J.. Pergamon Press. [RG]Google Scholar
Bennett, M. V. L. (1978) Command neurons: Know and say what you mean. Behavioral and Brain Sciences 1:1315. [JLL]CrossRefGoogle Scholar
Bowerman, R. F. & Larimer, J. L. (1974) Command fibres in circumoesophageal connectives of crayfish. 1. Tonic fibres. Journal of Experimental Biology 60:95117. [RCE]CrossRefGoogle Scholar
Bullock, T. H. (1947) Problems in invertebrate electrophysiology. Physiological Reviews 27:643–64. [RCE]CrossRefGoogle ScholarPubMed
Bullock, T. H. (1961) The problem of recognition in an analyzer made of neurons. In: Sensory communication, ed. Rosenblith, W. A.. M.I.T. Press. [RCE]Google Scholar
Cochran, S. L., Hackett, J. T. & Brown, D. L. (1980) The anuran Mauthner cell and its synaptic bed. Neuroscience 5:1629–46. [RCE]CrossRefGoogle ScholarPubMed
Croll, R. P., Kovac, M. P., Davis, W. J. & Matera, E. M. (1985) Neural mechanisms of motor program switching in the molusc Pleurobranchaea. III. Journal of Neuroscience 5:6471. [JK]CrossRefGoogle Scholar
Davis, W. J. (1976) Organizational concepts in the central motor networks of invertebrates. Advances in Behavioural Biology 18:265–92. [JK]CrossRefGoogle Scholar
Davis, W. J. (1977) The command neuron. In: Identified neurons and arthropod behavior, ed. Hoyle, G.. Plenum Press. [RCE, RC]Google Scholar
Davis, W. J. (1978) On the trail of the command neuron. Behavioral and Brain Sciences 1:1719. [JLL]CrossRefGoogle Scholar
Davis, W. J. (1984) Non-hierarchical central organisation of rhythmic invertebrate motor systems. In: Feedback and motor control. Society for Experimental Biology Symposium, Glascow, U.K. [RCM]Google Scholar
Eaton, R. C. (1984) Neural mechanisms of startle behavior. Plenum Press. [RCE]CrossRefGoogle Scholar
Eaton, R. C. & Bombardieri, R. A. (1978) Behavioral functions of the Mauthner neuron. In: Neurobiology of the Mauthner cell, ed. Faber, D. S. & Korn, H.. Raven Press. [RCE, RG]Google Scholar
Eaton, R. C., Bombardieri, R. A. & Meyer, D. L. (1977) The Mauthner-initiated startle response in teleost fish. Journal of Experimental Biology 66:6581. [RCE]CrossRefGoogle ScholarPubMed
Eaton, R. C. & DiDomenico, R. (in press) Command and the neural causation of behavior: A theoretical analysis of the necessity and sufficiency paradigm. Brain Behavior and Evolution. [RCE]Google Scholar
Eaton, R. C. & Farley, R. D. (1975) Mauthner neuron field potential in newly hatched larvae of the zebra fish. Journal of Neurophysiology 38:502–12. [RCE]CrossRefGoogle ScholarPubMed
Eaton, R. C., Farley, R. D., Kimmel, C. B. & Schabtach, E. (1977) Functional development in the Mauthner cell system of embryos and larvae of the zebra fish. Journal of Neurobiology 8:151–72. [RCE]CrossRefGoogle ScholarPubMed
Eaton, R. C. & Hackett, J. T. (1984) The role of the Mauthner cell in fast-starts involving escape in teleost fishes. In: Neural mechanisms of startle behavior, ed. Eaton, R. C.. Plenum Press. [RCE]CrossRefGoogle Scholar
Eaton, R. C. & Kimmel, C. B. (1980) Directional sensitivity of the Mauthner cell system to vibrational stimulation in zebrafish larvae. Journal of Comparative Physiology A 140:337–42. [RCE]CrossRefGoogle Scholar
Eaton, R. C., Lavender, W. A. & Wieland, C. M. (1981) Identification of Mauthner-initiated response patterns in goldfish: Evidence from simultaneous cinematography and electrophysiology. Journal of Comparative Physiology A 144:521–31. [RCE]CrossRefGoogle Scholar
Eaton, R. C., Lavender, W. A. & Wieland, C. M. (1982) Alternative neural pathways initiate fast-start responses following lesions of the Mauthner neuron in goldfish. Journal of Comparative Physiology A 145:485–96. [RCE, JTH]CrossRefGoogle Scholar
Eaton, R. C., Nissanov, J. & Wieland, C. M. (1984) Differential activation of Mauthner and non-Mauthner startle circuits in the zebrafish: Implications for functional substitution. Journal of Comparative Physiology A 155:813–20. [RCE]CrossRefGoogle Scholar
Eaton, R., Wieland, C. M. & DiDomenico, R. (1986) Is the Mauthner cell a Kupfermann & Weiss command neuron? Behavioral and Brain Sciences. [TS]CrossRefGoogle Scholar
Evoy, W. H. & Kennedy, D. (1967) The central nervous organization underlying control of antagonistic muscles in the crayfish. I. Types of command fibers. Journal of Experimental Zoology 165:223–38. [JLL, RCM]CrossRefGoogle Scholar
Fentress, J. C. (1978) On the sufficiency of command neurons. Behavioral and Brain Sciences 1:20 [TS]CrossRefGoogle Scholar
Getting, P. A. (1975) Tritonia swimming: Triggering a fixed action pattern. Brain Research 96:128–33. [RRH]CrossRefGoogle ScholarPubMed
Getting, P. A. (1977) Neuronal organization of escape swimming in Tritonia. Journal of Comparative Physiology 121:325–42. [JK]CrossRefGoogle Scholar
Getting, P. A., Lennard, P. R. & Hume, R. I. (1980). Central pattern generator mediating swimming in Tritonia. I. Identification and synaptic interactions. Journal of Neurophysiology 44:151–64. [RG]CrossRefGoogle ScholarPubMed
Gillette, M. U. & Gillette, R. (1983) Bursting neurons command consummatory feeding behavior and coordinated visceral receptivity in the predatory mollusk Pleurobranchaea. Journal of Neuroscience 3:17911806. [RG]CrossRefGoogle ScholarPubMed
Gillette, R., Kovac, M. P. & Davis, W. J. (1978) Command neurons in Pleurobranchaea receive synaptic feedback from the motor network they excite. Science 199:798801. [RC]CrossRefGoogle ScholarPubMed
Gillette, R., Kovac, M. P. & Davis, W. J. (1982) Control of feeding motor output by paracerebral neurons in brain of Pleurobranchaea californica. Journal of Neurophysiology 47:885908. [RG]CrossRefGoogle ScholarPubMed
Granzow, B. & Kater, S. (1977) Identified higher-order neurons controlling the feeding motor program of Helisoma. Journal of Neuroscience 2:1049–63. [RG]CrossRefGoogle Scholar
Hackett, J. T. & Faber, D. S. (1983) Mauthner axon networks mediating supraspinal components of the startle response in the goldfish. Neuroscience 8:317–31. [RCE, JTH, RRH]CrossRefGoogle ScholarPubMed
Hoyle, G. (1978) Where did the notion of “command neurons” come from? Behavioral and Brain Sciences 1:1011. [RCM]CrossRefGoogle Scholar
Hughes, G. M. & Wiersma, C. A. C. (1960) Neuronal pathways and synaptic connexions in the abdominal nerve cord of the crayfish. Journal of Experimental Biology 37:291307. [JLL]CrossRefGoogle Scholar
Jellies, J. A. (1984) Premotor interneurons involved in abdominal-positioning in crayfish: Synaptic interactions, sensory receptive fields, and activity during spontaneous movements. Ph.D. Dissertation, University of Texas at Austin. [JLL]Google Scholar
Jellies, J. & Larimer, J. L. (1983) Synaptic interactions between flexion-producing interneurons in crayfish. Society for Nueroscience Abstracts 9:382. [JLL]Google Scholar
Jellies, J. & Larimer, J. L. (1984) Tactile activation of interneurons which produce abdominal movements in crayfish. Society for Neuroscience Abstracts 10:626. [JLL]Google Scholar
Kandel, E. R. (1976) Cellular basis of behavior: An introduction to behavioral neurobiology. W. H. Freeman. [RCE]Google Scholar
Kennedy, D. (1969) The control of output by central neurons. In: The interneuron, ed. Brazier, M. A. B.. University of California Press. [RCE]Google Scholar
Kennedy, D. & Davis, W. J. (1977) Organization of invertebrate motor systems. In: Handbook of physiology, vol. 1, part 2, ed. Geiger, S. R., Kandel, E. R., Brookhart, J. M. & Mountcastle, V. B.. American Physiological Society. [RCM]Google Scholar
Kennedy, D., Evoy, W. H., Dane, B. & Hanawalt, J. T. (1967) The central nervous organization underlying control of antagonistic muscles in the crayfish. II. Coding of position by command fibers. Journal of Experimental Zoology 165:239–48. [JLL]CrossRefGoogle Scholar
Kien, J. (1983) The initiation and maintenance of walking in the locust: An alternative to the command concept. Proceedings of the Royal Society, Series B 219:137–74. [RG, JK]Google Scholar
Kien, J. & Altman, J. S. (1984) Descending interneurons from the brain and suboesophageal ganglia and their role in the control of locust behaviour. Journal of Insect Physiology 30:5972. [JK]CrossRefGoogle Scholar
Kimmel, C. B., Eaton, R. C. & Powell, S. L. (1980) Decreased fast-start performance of zebrafish larvae lacking Mauthner neurons. Journal of Comparative Physiology A 140:343–50. [RCE, JTH]CrossRefGoogle Scholar
Kimmel, C. B., Patterson, J. & Kimmel, R. O. (1974) The development and behavioral characteristics of the startle response in the zebra fish. Developmental Psychobiology 7:4760. [RCE]CrossRefGoogle ScholarPubMed
Kimmel, C. B., Powell, S. L. & Metcalfe, W. K. (1982) Brain neurons which project to the spinal cord in young larvae of the zebrafish. Journal of Comparative Neurology 205:112–27. [RCE]CrossRefGoogle Scholar
Koester, J., Mayari, E., Liebeswar, G. & Kandel, E. R. (1974) Neural control of circulation in Aplysia. II. Interneurons. Journal of Neurophysiology 37:476–96. [RG]CrossRefGoogle ScholarPubMed
Kovac, M. (1974) Abdominal movements during backward walking in crayfish. I. Properties of the motor program. Journal of Comparative Physiology 95:6178. [RCM]CrossRefGoogle Scholar
Krasne, F. B. & Wine, J. J. (1977) Control of crayfish escape behavior. In: Identified neurons and behavior of arthropods, ed. Hoyle, G.. Plenum. [RG]Google Scholar
Krasne, F. B. & Wine, J. J. (1984) The production of crayfish tailflip escape responses. In: Neural mechanisms of startle behavior, ed. Eaton, R. C.. Plenum Press. [RCE]Google Scholar
Kristan, W. B. (1983) The neurobiology of swimming in the leech. Trends in Neurosciences 6:8488. [JK]CrossRefGoogle Scholar
Kristan, W. B. Jr. & Weeks, J. C. (1983) Neurons controlling the initiation, generation and modulation of leech swimming. In: Neural origin of rhythmic movements, ed. Roberts, A. & Roberts, B. L.. Society for Experimental Biology Symposium 37:243–60. [JCW]Google Scholar
Kupfermann, I. (1970) Stimulation of egg laying by extracts of neuroendocrine cells (bag cells) of abdominal ganglion of Aplysia. Journal of Neurophysiology 33:877–81. [TS]CrossRefGoogle ScholarPubMed
Kupfermann, I. & Weiss, R. W. (1978) The command neuron concept. Behavioral and Brain Sciences 1:339. [RCE, RRH, JTH, JK, JLL, RCM, JCW, TS]CrossRefGoogle Scholar
Kupfermann, I. & Weiss, R. W. (1978r) Quis imperat? A panorama of perspectives. Behavioral and Brain Sciences 1:3739. [RCM]CrossRefGoogle Scholar
Larimer, J. L. (1976a) Command interneurons and locomotor behavior in crustaceans. In: Neuronal control of locomotion, ed. Herman, R. M., Grillner, S., Stein, P. S. G. & Stuart, D. G.. Plenum Press. [RCM]Google Scholar
Larimer, J. L. (1976b) Command interneurons and locomotor behaviour in crustaceans. Advances in Behavioural Biology 18:293325. [JK]CrossRefGoogle Scholar
Larimer, J. L. & Gordon, W. H. (1977) Circumoesophageal interneurons and behavior in crayfish. In: Identified neurons and behavior of arthropods, ed. Hoyle, G.. Plenum Press. [JLL]Google Scholar
Larimer, J. L. & Jellies, J. (1983) The organization of flexion-evoking interneurons in the abdominal nerve cord of the crayfish, Procambarus clarkii. Journal of Experimental Zoology 226:341–51. [JLL, RCM]CrossRefGoogle ScholarPubMed
Larimer, J. L. & Kennedy, D. (1969) The central nervous control of complex movements in the uropods of crayfish. Journal of Experimental Biology 51:135–50. [RCM]CrossRefGoogle Scholar
London, J. A. & Gillette, R. (1984) Functional role and circuitry in an inhibitory pathway to feeding command neurones in Pleurobranchaea. Journal of Experimental Biology. 113:423–46. [RG]CrossRefGoogle Scholar
Lorenz, K. (1970) Taxis and instinctive behaviour pattern in egg-rolling by the Greylag goose. In: Studies in animal and human behavior, ed. Lorenz, K., transl. Martin, R. D.. Harvard University Press. [RG]Google Scholar
Mayeri, E. (1979) Local hormonal modulation of neural activity in Aplysia. Federation Proceedings 38:2103–8. [TS]Google ScholarPubMed
Mayeri, E., Koester, J., Kupfermann, I., Liebeswar, G. & Kandel, E. R. (1974) Neural control of circulation in Aplysia. I. Motorneurons. Journal of Neurophysiology 37:458–75. [RG]CrossRefGoogle Scholar
Miall, R. C. & Larimer, J. L. (1982) Interneurons involved in abdominal posture in crayfish: Structure, function and command fiber responses. Journal of Comparative Physiology 148:159–73. [RG, RCM]CrossRefGoogle Scholar
Miller, J. P. & Selverston, A. I. (1979) Rapid killing of single neurons by irradiation of intracellularly injected dye. Science 206:702–04. [JCW]CrossRefGoogle ScholarPubMed
Miller, J. P. & Selverston, A. I. (1982) Mechanisms underlying pattern generation in lobster stomatogastric ganglion as determined by selective inactivation of identified neurons. IV. Network properties of pyloric system. Journal of Neurophysiology 48:1416–32. [RG]CrossRefGoogle ScholarPubMed
Moiseff, A. & Hoy, R. R. (1983) Sensitivity to ultrasound in an identified auditory interneuron in the cricket. Journal of Comparative Physiology 152:155–67. [RRH]CrossRefGoogle Scholar
Nolen, T. G. & Hoy, R. R. (1984) Initiation of behavior in single neurons: The role of behavioral context. Science 226:992–94. [RRH]CrossRefGoogle ScholarPubMed
Olson, G. C. & Krasne, F. B. (1981) The crayfish lateral giants as command neurons for escape behavior. Brain Research 214:89100. [RCE, RRH]CrossRefGoogle ScholarPubMed
Orban, G. (1984) Neuronal operations in the visual cortex. Springer. [JK]CrossRefGoogle Scholar
Pinsker, H. & Dudek, F. E. (1977) Bag cell control of egg-laying in freely behaving Aplysia. Science 197:490–93. [TS]CrossRefGoogle ScholarPubMed
Prugh, J. I. P., Kimmel, C. B. & Metcalfe, W. K. (1982) Noninvasive recording of the Mauthner neurone action potential in larval zebrafish. Journal of Experimental Biology 101:8392. [RCE]CrossRefGoogle ScholarPubMed
Reichert, H. & Wine, J. J. (1983) Coordination of lateral giant and non-giant systems in crayfish escape behavior. Journal of Comparative Physiology A 153:315. [RCE]CrossRefGoogle Scholar
Rock, M. K. (1980) Functional properties of Mauthner cell in the tadpole Rana catesbeiana. Journal of Neurophysiology 44:135–50. [RCE]CrossRefGoogle ScholarPubMed
Rock, M. K., Hackett, J. T. & Brown, D. L. (1981) Does the Mauthner cell conform to the criteria of the command neuron concept? Brain Research 204:2127. [RCE, JTH]CrossRefGoogle Scholar
Roeder, K. D. (1948) Organization of the ascending giant fiber system in the cockroach (Periplaneta americana). Journal of Experimental Zoology 108:243–61. [RCE]CrossRefGoogle ScholarPubMed
Roeder, K. D. (1967) Nerve cells and insect behavior. Harvard University Press. [RRH]Google Scholar
Rose, R. M. & Benjamin, P. R. (1981) Interneuronal control of feeding in the pond snail Lymnaea stagnalis. I. Journal of Experimental Biology 92:187201. [JK]CrossRefGoogle Scholar
Russell, D. F. (1976) Rhythmic excitatory inputs to the lobster stomatogastric ganglion. Brain Research 101:582–88. [RG]CrossRefGoogle Scholar
Schlesinger, D. H., Babirak, S. B. & Blankenship, J. E. (1981) In: Symposium on neurohypophyseal peptide hormones and other biologically active peptides, ed. Schlesinger, D. H.. Elsevier. [TS]Google Scholar
Sigvardt, K. A., Hagiwara, G. & Wine, J. J. (1982) Mechanosensory integration in the crayfish abdominal nervous system: Structural and physiological differences between interneurons with single and multiple spike initiation sites. Journal of Comparative Physiology 148:143–57. [JLL]CrossRefGoogle Scholar
Thompson, C. S. & Page, C. H. (1981) Interneuronal control of postural motoneurons in the lobster abdomen. Journal of Neurobiology 12:8791. [RCM]CrossRefGoogle ScholarPubMed
Tinbergen, N. (1951) The study of instinct. Oxford University Press. [TS]Google Scholar
Webb, P. W. (1978) Fast-start performance and body form in seven species of teleost fish. Journal of Experimental Biology 74:211–26. [RCE]CrossRefGoogle Scholar
Weeks, J. C. (1981) Neuronal basis of leech swimming: Separation of swim initiation, pattern generation and intersegmental coordination by selective lesions. Journal of Neurophysiology 45:698723. [JCW]CrossRefGoogle ScholarPubMed
Weeks, J. C. (1982a) Segmental specialization of a leech swim-initiating interneuron, cell 205. Journal of Neuroscience 2:972–85. [JCW]CrossRefGoogle Scholar
Weeks, J. C.(1982b) Synaptic basis of swim initiation in the leech. I. Connections of a swim-initiating neuron (cell 204) with motor neurons and pattern-generating “oscillator” neurons. Journal of Comparative Physiology 148:253–63. [RG, JCW]CrossRefGoogle Scholar
Weeks, J. C.(1982c) Synaptic basis of swim initiation in the leech. II. A pattern-generating neuron (cell 208) which mediates motor effects of swim-initiating neurons. Journal of Comparative Physiology 148:265–79. [JCW]CrossRefGoogle Scholar
Weeks, J. C. & Kristan, W. B. Jr. (1978) Initiation, maintenance and modulation of swimming in the medicinal leech by the activity of a single neurone. Journal of Experimental Biology 77:7188. [JCW]CrossRefGoogle Scholar
Weiss, K. R. & Kupfermann, I. (1976) Homology of the giant sertonergic neurons (metacerebral cells) in Aplysia and pulmonate molluses. Brain Research 117:3349. [RG]CrossRefGoogle Scholar
Wieland, C. M. & Eaton, R. C. (1984) Evidence for Mauthner derived inhibition of non-Mauthner escape responses in goldfish. Society for Neuroscience Abstracts 10:402. [RCE, JTH]Google Scholar
Wiersma, C. A. G. (1938) Function of the giant fibers of the central nervous system of the crayfish. Proceedings of the Society of Experimental Biology and Medicine, United States of America 38:661–62. [RCE]CrossRefGoogle Scholar
Wiersma, C. A. G. (1958) On the functional connections of single units in the central nervous system of the crayfish, Procambarus clarkii Girard. Journal of Comparative Neurology 110:421–71. [JLL]CrossRefGoogle ScholarPubMed
Wiersma, C. A. G. & Ikeda, K. (1964) Interneurons commanding swimmeret movements in the crayfish, Procambarus clarkii (Girard). Comparative Biochemistry and Physiology 12:509–25. [RCE, RCM]CrossRefGoogle Scholar
Wiersma, C. A. G. & Mill, P. J. (1965) “Descending” neuronal units in the commissure of the crayfish central nervous system; and their integration of visual, tactile and proprioceptive stimuli, Journal of Comparative Neurology 125:6794. [JLL]CrossRefGoogle ScholarPubMed
Wiersma, C. A. G., Ripley, S. H. & Christensen, E. (1955) The central representation of sensory stimulation in crayfish, Journal of Cellular and Comparative Physiology 46:307–26. [JLL]CrossRefGoogle ScholarPubMed
Wine, J. J. & Krasne, F. B. (1972) The organization of escape behavior in the crayfish. Journal of Experimental Biology 56:118. [RRH]CrossRefGoogle ScholarPubMed
Wine, J. J. & Krasne, F. B. (1982) The cellular organisation of crayfish escape behaviour. In: The biology of Crustacea, vol. 4, ed. Bliss, D. E.. Academic Press. [JK]Google Scholar
Yasargil, G. M. & Diamond, J. (1968) Startle-response in teleost fish: An elementary circuit for neural discrimination. Nature 220:241–43. [RCE]CrossRefGoogle Scholar
Zottoli, S. J. (1977) Correlation of the startle reflex and Mauthner cell auditory responses in unrestrained goldfish. Journal of Experimental Biology 66:243–54. [RCE]CrossRefGoogle ScholarPubMed