Skip to main content Accessibility help
Hostname: page-component-99c86f546-vl2kb Total loading time: 0.503 Render date: 2021-11-28T05:37:04.728Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Visual prediction: Psychophysics and neurophysiology of compensation for time delays

Published online by Cambridge University Press:  14 May 2008

Romi Nijhawan
Department of Psychology, University of Sussex, Falmer, East Sussex, BN1 9QH, United


A necessary consequence of the nature of neural transmission systems is that as change in the physical state of a time-varying event takes place, delays produce error between the instantaneous registered state and the external state. Another source of delay is the transmission of internal motor commands to muscles and the inertia of the musculoskeletal system. How does the central nervous system compensate for these pervasive delays? Although it has been argued that delay compensation occurs late in the motor planning stages, even the earliest visual processes, such as phototransduction, contribute significantly to delays. I argue that compensation is not an exclusive property of the motor system, but rather, is a pervasive feature of the central nervous system (CNS) organization. Although the motor planning system may contain a highly flexible compensation mechanism, accounting not just for delays but also variability in delays (e.g., those resulting from variations in luminance contrast, internal body temperature, muscle fatigue, etc.), visual mechanisms also contribute to compensation. Previous suggestions of this notion of “visual prediction” led to a lively debate producing re-examination of previous arguments, new analyses, and review of the experiments presented here. Understanding visual prediction will inform our theories of sensory processes and visual perception, and will impact our notion of visual awareness.

Main Articles
Copyright ©Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Aho, A. C., Donner, K., Helenius, S., Larsen, L. O. & Reuter, T. (1993) Visual performance of the toad (Bufo bufo) at low light levels: Retinal ganglion cell responses and prey-catching accuracy. Journal of Comparative Physiology A 172(6):671–82.CrossRefGoogle ScholarPubMed
Alais, D. & Burr, D. (2003) The “flash-lag” effect occurs in audition and cross-modally. Current Biology 13(1):5963.CrossRefGoogle ScholarPubMed
Andersen, R. A. & Buneo, C. A. (2002) Intentional maps in posterior parietal cortex. Annual Review of Neuroscience 25:189220.CrossRefGoogle ScholarPubMed
Andersen, R. A., Snyder, L. H., Li, C. S. & Stricanne, B. (1993) Coordinate transformations in the representation of spatial information. Current Opinion in Neurobiology 3(2):171–76.CrossRefGoogle ScholarPubMed
Anderson, C. H. & Van Essen, D C. (1987) Shifter circuits: A computational strategy for dynamic aspects of visual processing. Proceedings of the National Academy of Science USA 84(17):6297–301.CrossRefGoogle ScholarPubMed
Anderson, C. H., Van Essen, D. C. & Gallant, J. L. (1990) Blur into focus. Nature 343(6257):419–20.CrossRefGoogle ScholarPubMed
Anstis, S. M., Smith, D. R. & Mather, G. (2000) Luminance processing in apparent motion, Vernier offset and stereoscopic depth. Vision Research 40(6):657–75.CrossRefGoogle ScholarPubMed
Arbib, M. A. (1972) The metaphorical brain: An introduction to cybernetics as artificial intelligence and brain theory. Wiley Interscience.Google Scholar
Baldo, M. V. & Caticha, N. (2005) Computational neurobiology of the flash-lag effect. Vision Research 45(20):2620–30.CrossRefGoogle ScholarPubMed
Barlow, H. B. (1953) Summation and inhibition in the frog's retina. Journal of Physiology 119:6988.CrossRefGoogle ScholarPubMed
Barlow, H. B. (1961a) Possible principles underlying the transformations of sensory messages. In: Sensory communication, ed. Rosenblith, W. A.. Wiley.Google Scholar
Barlow, H. B. (1979) Reconstructing the visual image in space and time. Nature 279(5710):189–90.CrossRefGoogle ScholarPubMed
Barlow, H. B. (1981) The Ferrier Lecture, 1980. Critical limiting factors in the design of the eye and visual cortex. Proceedings of the Royal Society of London B: Biological Sciences 212(1186):134.CrossRefGoogle ScholarPubMed
Batista, A. P., Buneo, C. A., Snyder, L. H. & Andersen, R. A. (1999) Reach plans in eye-centered coordinates. Science 285(5425):257–60.CrossRefGoogle ScholarPubMed
Berry, M. J., Brivanlou, I. H., Jordan, T. A. & Meister, M. (1999) Anticipation of moving stimuli by the retina. Nature 398(6725):334–38.CrossRefGoogle ScholarPubMed
Bialek, W., Rieke, F., de Ruyter van Steveninck, R. R. & Warland, D. (1991) Reading a neural code. Science 252(5014):1854–57.CrossRefGoogle Scholar
Blakemore, S. J., Wolpert, D. M. & Frith, C. D. (2002) Abnormalities in the awareness of action. Trends in Cognitive Sciences 6(6):237–42.CrossRefGoogle ScholarPubMed
Bootsma, R. J. & Oudejans, R. R. (1993) Visual information about time-to-collision between two objects. Journal of Experimental Psychology: Human Perception and Performance 19(5):1041–52.Google ScholarPubMed
Brenner, E. & Smeets, J. B. (2000) Motion extrapolation is not responsible for the flash-lag effect. Vision Research 40(13):1645–48.CrossRefGoogle Scholar
Brenner, E., Smeets, J. B. J. & van den Berg, A. V. (2001) Smooth eye movements and spatial localization. Vision Research 41:2253–59.CrossRefGoogle Scholar
Bringuier, V., Chavane, F., Glaeser, L. & Fregnac, Y. (1999) Horizontal propagation of visual activity in the synaptic integration field of area 17 neurons. Science 283(5402):695–99.CrossRefGoogle ScholarPubMed
Bullock, D. (2003) Motoneuron recruitment. In: The handbook of brain theory and neural networks, ed. Arbib, M. A.. MIT Press.Google Scholar
Burr, D. C. (1980) Motion smear. Nature 284(5752):164–65.CrossRefGoogle ScholarPubMed
Burr, D. C. & Morgan, M. J. (1997) Motion deblurring in human vision. Proceedings of the Royal Society of London B: Biological Sciences 264(1380):431–36.CrossRefGoogle ScholarPubMed
Burr, D. C. & Ross, J. (1979) How does binocular delay give information about depth? Vision Research 19(5):523–32.CrossRefGoogle ScholarPubMed
Cavanagh, P. (1997) Predicting the present. Nature 386(6620):19, 21.CrossRefGoogle ScholarPubMed
Changizi, M. A., Hsieh, A., Nijhawan, R., Kanai, R. & Shimojo, S. (in press) Perceiving-the-present and a systematization of illusions. Cognitive ScienceGoogle Scholar
Crick, F. & Koch, C. (1995) Are we aware of neural activity in primary visual cortex? Nature 375(6527):121–23.CrossRefGoogle ScholarPubMed
Cudeiro, J. & Sillito, A. M. (2006) Looking back: Corticothalamic feedback and early visual processing. Trends in Neuroscience 29(6):298306.CrossRefGoogle ScholarPubMed
Cynader, M. & Berman, N. (1972) Receptive-field organization of monkey superior colliculus. Journal of Neurophysiology 35(2):187201.CrossRefGoogle ScholarPubMed
Davidson, D. (1970) Mental events. In: The nature of mind, ed. Rosenthal, D.. Oxford University Press.Google Scholar
De Valois, R. L. & Cottaris, N. P. (1998) Inputs to directionally selective simple cells in macaque striate cortex. Proceedings of the National Academy of Sciences USA 95(24):14488–93.CrossRefGoogle ScholarPubMed
De Valois, R. L. & De Valois, K. K. (1991) Vernier acuity with stationary moving Gabors. Vision Research 31(9):1619–26.CrossRefGoogle ScholarPubMed
Dean, P., Redgrave, P. & Westby, G. W. (1989) Event or emergency? Two response systems in the mammalian superior colliculus. Trends in Neuroscience 12(4):137–47.CrossRefGoogle ScholarPubMed
Dennett, D. C. & Kinsbourne, M. (1992) Time and the observer: The where and when of consciousness in the brain. Behavioral and Brain Sciences 15:183247.CrossRefGoogle Scholar
Desimone, R. (1998) Visual attention mediated by biased competition in extrastriate visual cortex. Philosophical Transactions of the Royal Society of London B: Biological Sciences 353(1373):1245–55.CrossRefGoogle ScholarPubMed
Desimone, R. & Duncan, J. (1995) Neural mechanisms of selective visual attention. Annual Review of Neuroscience 18:193222.CrossRefGoogle ScholarPubMed
DeYoe, E. A. & Van Essen, D. C. (1988) Concurrent processing streams in monkey visual cortex. Trends in Neuroscience 11(5):219–26.CrossRefGoogle ScholarPubMed
DiCarlo, J. J. & Maunsell, J. H. (2005) Using neuronal latency to determine sensory-motor processing pathways in reaction time tasks. Journal of Neurophysiology 93(5):2974–86.CrossRefGoogle ScholarPubMed
Diedrichsen, J., Verstynen, T., Hon, A., Lehman, S. L. & Ivry, R. B. (2003) Anticipatory adjustments in the unloading task: Is an efference copy necessary for learning? Experimental Brain Research 148(2):272–76.CrossRefGoogle ScholarPubMed
Dowling, J. E. (1979) Information processing by local circuits: the vertebrate retina as a model system. In: The neurosciences: Fourth study program, ed. Schmitt, F. O. & Worden, F. G.. MIT Press.Google Scholar
Dreher, B., Fukada, Y. & Rodieck, R. W. (1976) Identification, classification and anatomical segregation of cells with X-like and Y-like properties in the lateral geniculate nucleus of old-world primates. Journal of Physiology 258(2):433–52.CrossRefGoogle ScholarPubMed
DuBois, R. M. & Cohen, M. S. (2000) Spatiotopic organization in human superior colliculus observed with fMRI. Neuroimage 12(1):6370.CrossRefGoogle ScholarPubMed
Duhamel, J.-R., Colby, C. L. & Goldberg, M. E. (1992) The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255:9092.CrossRefGoogle ScholarPubMed
Eagleman, D. M. & Sejnowski, T. J. (2000) Motion integration and postdiction in visual awareness. Science 287(5460):2036–38.CrossRefGoogle ScholarPubMed
Engel, A. K., Fries, P. & Singer, W. (2001) Dynamic predictions: Oscillations and synchrony in top-down processing. Nature Reviews Neuroscience 2(10):704–16.CrossRefGoogle ScholarPubMed
Erlhagen, W. (2003) Internal models for visual perception. Biological Cybernetics 88(5):409–17.CrossRefGoogle ScholarPubMed
Eskandar, E. N. & Assad, J. A. (1999) Dissociation of visual, motor and predictive signals in parietal cortex during visual guidance. Nature Neuroscience 2(1):8893.CrossRefGoogle ScholarPubMed
Fein, A. & Szuts, E. Z. (1982) Photoreceptors: Their role in vision Cambridge University Press.Google Scholar
Felleman, D. J. & Van Essen, D. C. (1991) Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex 1(1):147.CrossRefGoogle ScholarPubMed
Franz, V. H., Gegenfurtner, K. R., Bulthoff, H. H. & Fahle, M. (2000) Grasping visual illusions: no evidence for a dissociation between perception and action. Psychological Science 11(1):2025.CrossRefGoogle ScholarPubMed
Freyd, J. J. (1987) Dynamic mental representations. Psychological Review 94(4):427–38.CrossRefGoogle ScholarPubMed
Fu, Y. X., Shen, Y. & Dan, Y. (2001) Motion-induced perceptual extrapolation of blurred visual targets. Journal of Neuroscience 21(20):RC172.CrossRefGoogle ScholarPubMed
Gegenfurtner, K. (1999) Neurobiology. The eyes have it! Nature 398(6725):291–92.CrossRefGoogle Scholar
Georgopoulos, A. P. (1986) On reaching. Annual Review of Neuroscience 9:147–70.CrossRefGoogle ScholarPubMed
Ghez, C. & Krakauer, J. (2000) The organization of movement. In: Principles of neural science, ed. Kandel, E. R., Schwartz, J. H. & Jessell, T. M.. McGraw Hill.Google Scholar
Gibson, J. J. (1961) Ecological optics. Vision Research 1:253–62.CrossRefGoogle Scholar
Goel, A., Jiang, B., Xu, L. W., Song, L., Kirkwood, A. & Lee, H. K. (2006) Cross-modal regulation of synaptic AMPA receptors in primary sensory cortices by visual experience. Nature Neuroscience 9(8):10011003.CrossRefGoogle ScholarPubMed
Goodale, M. A. & Milner, A. D. (1992) Separate visual pathways for perception and action. Trends in Neurosciences 15(1):2025.CrossRefGoogle ScholarPubMed
Goodale, M. A., Pelisson, D. & Prablanc, C. (1986) Large adjustments in visually guided reaching do not depend on vision of the hand or perception of target displacement. Nature 320(6064):748–50.CrossRefGoogle ScholarPubMed
Grzywacz, N. M. & Amthor, F. R. (1993) Facilitation in ON-OFF directionally selective ganglion cells of the rabbit retina. Journal of Neurophysiology 69(6):2188–99.CrossRefGoogle ScholarPubMed
Harris, C. S. (1963) Adaptation to displaced vision: Visual, motor, or proprioceptive change? Science 140:812–13.CrossRefGoogle ScholarPubMed
Harris, C. S. (1980) Insight or out of sight? Two examples of perceptual plasticity in the human adult. In: Visual coding and adaptability, ed. Harris, C. S.. Erlbaum.Google Scholar
Hazelhoff, F. & Wiersma, H. (1924) Die Wahrnehmungszeit I. Zeitschrift für Psychologie 96:171–88.Google Scholar
He, S., Cavanagh, P. & Intriligator, J. (1996) Attentional resolution and the locus of visual awareness. Nature 383(6598):334–37.CrossRefGoogle ScholarPubMed
Held, R. & Freedman, S. J. (1963) Plasticity in human sensorimotor control. Science 142:455–62.CrossRefGoogle ScholarPubMed
Hess, E. H. (1956) Space perception in the chick. Scientific American 195:7180.CrossRefGoogle Scholar
Hubel, D. H. & Wiesel, T. N. (1962) Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. Journal of Physiology 160:106–54.CrossRefGoogle ScholarPubMed
Hupe, J. M., James, A. C., Payne, B. R., Lomber, S. G., Girard, P. & Bullier, J. (1998) Cortical feedback improves discrimination between figure and background by V1, V2 and V3 neurons. Nature 394(6695):784–87.Google ScholarPubMed
Jancke, D., Erlhagen, W., Dinse, H. R., Akhavan, A. C., Giese, M., Steinhage, A. & Schoner, G. (1999) Parametric population representation of retinal location: Neuronal interaction dynamics in cat primary visual cortex. Journal of Neuroscience 19(20):9016–28.CrossRefGoogle ScholarPubMed
Jeannerod, M., Kennedy, H. & Magnin, M. (1979) Corollary discharge: Its possible implications in visual and oculomotor interactions. Neuropsychologia 17(2):241–58.CrossRefGoogle ScholarPubMed
Johansson, R. S. & Westling, G. (1988) Programmed and triggered actions to rapid load changes during precision grip. Experimental Brain Research 71(1):7286.CrossRefGoogle ScholarPubMed
Kanai, R., Sheth, B. R. & Shimojo, S. (2004) Stopping the motion and sleuthing the flash-lag effect: spatial uncertainty is the key to perceptual mislocalization. Vision Research 44(22):2605–19.CrossRefGoogle ScholarPubMed
Kandel, E. R. & Wurtz, R. H. (2000) Constructing the visual image. In: Principles of neural science, ed. Kandel, E. R., Schwartz, J. H. & Jessell, T. M.. McGraw Hill.Google Scholar
Kaplan, E. & Shapley, R. M. (1982) X and Y cells in the lateral geniculate nucleus of macaque monkeys. Journal of Physiology 330:125–43.CrossRefGoogle Scholar
Kawato, M. (1999) Internal models for motor control and trajectory planning. Current Opinion in Neurobiology 9(6):718–27.CrossRefGoogle ScholarPubMed
Kawato, M., Furukawa, K. & Suzuki, R. (1987) A hierarchical neural-network model for control and learning of voluntary movement. Biological Cybernetics 57(3):169–85.CrossRefGoogle ScholarPubMed
Keysers, C. & Perrett, D. I. (2002) Visual masking and RSVP reveal neural competition. Trends in Cognitive Sciences 6(3):120–25.CrossRefGoogle ScholarPubMed
Khurana, B., Carter, R. M., Watanabe, K. & Nijhawan, R. (2006) Flash-lag chimeras: The role of perceived alignment in the composite face effect. Vision Research 46(17):2757–72.CrossRefGoogle ScholarPubMed
Khurana, B. & Nijhawan, R. (1995) Extrapolation or attention shift? Reply to Baldo and Klein. Nature 378:565–66.CrossRefGoogle Scholar
Khurana, B., Watanabe, K. & Nijhawan, R. (2000) The role of attention in motion extrapolation: Are moving objects “corrected” or flashed objects attentionally delayed? Perception 29(6):675–92.CrossRefGoogle ScholarPubMed
Kirschfeld, K. (1983) Are photoreceptors optimal? Trends in Neurosciences 6:97101.CrossRefGoogle Scholar
Kirschfeld, K. & Kammer, T. (1999) The Fröhlich effect: A consequence of the interaction of visual focal attention and metacontrast. Vision Research 39(22):3702–709.CrossRefGoogle ScholarPubMed
Krekelberg, B. & Lappe, M. (2001) Neuronal latencies and the position of moving objects. Trends in Neurosciences 24:335–39.CrossRefGoogle ScholarPubMed
Lacquaniti, F. & Maioli, C. (1989) The role of preparation in tuning anticipatory and reflex responses during catching. Journal of Neuroscience 9(1):134–48.CrossRefGoogle ScholarPubMed
Lamarre, Y., Busby, L. & Spidalieri, G. (1983) Fast ballistic arm movements triggered by visual, auditory, and somesthetic stimuli in the monkey. I. Activity of precentral cortical neurons. Journal of Neurophysiology 50(6):1343–58.CrossRefGoogle ScholarPubMed
Lamme, V. A. & Roelfsema, P. R. (2000) The distinct modes of vision offered by feedforward and recurrent processing. Trends in Neuroscience 23(11):571–z79.CrossRefGoogle ScholarPubMed
Land, M. F. & McLeod, P. (2000) From eye movements to actions: how batsmen hit the ball. Nature Neuroscience 3(12):1340–45.CrossRefGoogle Scholar
Lee, C., Rohrer, W. H. & Sparks, D. L. (1988) Population coding of saccadic eye movements by neurons in the superior colliculus. Nature 332(6162):357–60.CrossRefGoogle ScholarPubMed
Lee, D. N. (1976) A theory of visual control of braking based on information about time-to-collision. Perception 5(4):437–59.CrossRefGoogle ScholarPubMed
Lee, D. N. & Reddish, P. E. (1981) Plummeting gannets: A paradigm of ecological optics. Nature 293:293–94.CrossRefGoogle Scholar
Liberman, A. M. & Mattingly, I. G. (1985) The motor theory of speech perception revised. Cognition 21(1):136.CrossRefGoogle ScholarPubMed
Macknik, S. L., Martinez-Conde, S. & Haglund, M. M. (2000) The role of spatiotemporal edges in visibility and visual masking. Proceedings of the National Academy of Sciences USA 97(13):7556–60.CrossRefGoogle ScholarPubMed
Marr, D. (1982) Vision. W. H. Freeman.Google Scholar
Mateeff, S. & Hohnsbein, J. (1988) Perceptual latencies are shorter for motion towards the fovea than for motion away. Vision Research 28(6):711–19.CrossRefGoogle ScholarPubMed
Maunsell, J. H. & Gibson, J. R. (1992) Visual response latencies in striate cortex of the macaque monkey. Journal of Neurophysiology 68(4):1332–44.CrossRefGoogle ScholarPubMed
Maus, G. W. & Nijhawan, R. (2006) Forward displacements of fading objects in motion: The role of transient signals in perceiving position. Vision Research 46(26):4375–81.CrossRefGoogle ScholarPubMed
Mehta, B. & Schaal, S. (2002) Forward models in visuomotor control. Journal of Neurophysiology 88(2):942–53.CrossRefGoogle ScholarPubMed
Merfeld, D. M., Zupan, L. & Peterka, R. J. (1999) Humans use internal models to estimate gravity and linear acceleration. Nature 398(6728):615–18.CrossRefGoogle ScholarPubMed
Metzger, W. (1932) Versuch einer gemeinsamen Theorie der Phänomene Fröhlichs und Hazelhoffs und Kritik ihrer Verfahren zur Messung der Empfindungszeit. Psychologische Forschung 16:176200.CrossRefGoogle Scholar
Meyer, D. E., Osman, A. M., Irwin, D. E. & Yantis, S. (1988) Modern mental chronometry. Biological Psychology 26(1–3):367.CrossRefGoogle ScholarPubMed
Milner, A. D. & Goodale, M. A. (1995) The visual brain in action Oxford University Press.Google Scholar
Mishkin, M. & Ungerleider, L. G. (1983) Object vision and spatial vision: Two cortical pathways. Trends in Neuroscience 6:414–35.CrossRefGoogle Scholar
Morgan, M. J. & Thompson, P. (1975) Apparent motion and the Pulfrich effect. Perception 4(1):318.CrossRefGoogle ScholarPubMed
Müsseler, J. & Prinz, W. (1996) Action planning during the presentation of stimulus sequences: effects of compatible and incompatible stimuli. Psychological Research 59(1):4863.CrossRefGoogle ScholarPubMed
Nakamura, K., Matsumoto, K., Mikami, A. & Kubota, K. (1994) Visual response properties of single neurons in the temporal pole of behaving monkeys. Journal of Neurophysiology 71(3):1206–21.CrossRefGoogle ScholarPubMed
Nijhawan, R. (1992) Misalignment of contours through the interaction of the apparent and real motion systems. Investigative Ophthalmology and Visual Science 33(Suppl. 4):1415.Google Scholar
Nijhawan, R. (1994) Motion extrapolation in catching. Nature 370(6487):256–57.CrossRefGoogle ScholarPubMed
Nijhawan, R. (1997) Visual decomposition of colour through motion extrapolation. Nature 386(6620):6669.CrossRefGoogle ScholarPubMed
Nijhawan, R. (2001) The flash-lag phenomenon: object-motion and eye-movements. Perception 30:263–82.CrossRefGoogle ScholarPubMed
Nijhawan, R. (2002) Neural delays, visual motion and the flash-lag effect. Trends in Cognitive Sciences 6:387–93.CrossRefGoogle ScholarPubMed
Nijhawan, R. & Kirschfeld, K. (2003) Analogous mechanisms compensate for neural delays in the sensory and the motor pathways: Evidence from motor flash-lag. Current Biology 13(9):749–53.CrossRefGoogle ScholarPubMed
Parkinson, J. & Khurana, B. (2007) Temporal order of strokes primes letter recognition. Quarterly Journal of Experimental Psychology 60:1265–74.CrossRefGoogle ScholarPubMed
Poritsky, R. (1969) Two- and three-dimensional ultrastructure of boutons and glial cells on the motoneuronal surface in the cat spinal cord. Journal of Comparative Neurology 135(4):423–52.CrossRefGoogle Scholar
Port, N. L., Kruse, W., Lee, D. & Georgopoulos, A. P. (2001) Motor cortical activity during interception of moving targets. Journal of Cognitive Neuroscience 13(3):306–18.CrossRefGoogle ScholarPubMed
Purushothaman, G., Patel, S. S., Bedell, H. E. & Öğmen, H. (1998) Moving ahead through differential visual latency. Nature 396(6710):424.CrossRefGoogle ScholarPubMed
Raiguel, S. E., Lagae, L., Gulyas, B. & Orban, G. A. (1989) Response latencies of visual cells in macaque areas V1, V2 and V5. Brain Research 493(1):155–59.CrossRefGoogle ScholarPubMed
Ramachandran, V. S. & Anstis, S. M. (1990) Illusory displacement of equiluminous kinetic edges. Perception 19(5):611–16.CrossRefGoogle ScholarPubMed
Ramachandran, V. S., Rao, V. M. & Vidyasagar, T. R. (1974) Sharpness constancy during movement perception. Perception 3(1):9798.CrossRefGoogle ScholarPubMed
Ratliff, F. & Hartline, H. K. (1959) The responses of limulus optic nerve fibers to patterns of illumination on the receptor mosaic. Journal of General Physiology 42(6):1241–55.CrossRefGoogle ScholarPubMed
Regan, D. (1992) Visual judgements and misjudgements in cricket, and the art of flight. Perception 21(1):91115.CrossRefGoogle ScholarPubMed
Rizzolatti, G., Fadiga, L., Fogassi, L. & Gallese, V. (1997) The space around us. Science 277(5323):190–91.CrossRefGoogle ScholarPubMed
Rojas-Anya, H., Thirkettle, M. & Nijhawan, R. (2005) Flash-lag anisotropy for movement in three domains. Perception 34:219–20.Google Scholar
Roufs, J. A. J. (1963) Perception lag as a function of stimulus luminance. Vision Research 3:8191.CrossRefGoogle Scholar
Sarnat, H. B. & Netsky, M. G. (1981) Evolution of the nervous system. Oxford Uinversity Press.Google Scholar
Schiller, P. H. (1984) The superior colliculus and visual function. In: Handbook of physiology: The nervous system. Neurophysiology, ed. Darien-Smith, I.. American Physiological Society.Google Scholar
Schiller, P. H. & Malpeli, J. G. (1978) Functional specificity of lateral geniculate nucleus laminae of the rhesus monkey. Journal of Neurophysiology 41(3):788–97.CrossRefGoogle ScholarPubMed
Schlag, J. & Schlag-Rey, M. (2002) Through the eye slowly: delays and localization errors in the visual system. Nature Reviews Neuroscience 3:191200.CrossRefGoogle ScholarPubMed
Schmolesky, M. T., Wang, Y., Hanes, D. P., Thompson, K. G., Leutgeb, S., Schall, J. D. & Leventhal, A. G. (1998) Signal timing across the macaque visual system. Journal of Neurophysiology 79(6):3272–78.CrossRefGoogle ScholarPubMed
Shapley, R. M. & Victor, J. D. (1978) The effect of contrast on the transfer properties of cat retinal ganglion cells. Journal of Physiology 285:275–98.CrossRefGoogle ScholarPubMed
Sheth, B. R., Nijhawan, R. & Shimojo, S. (2000) Changing objects lead briefly flashed ones. Nature Neuroscience 3(5):489–95.CrossRefGoogle ScholarPubMed
Sillito, A. M., Jones, H. E., Gerstein, G. L. & West, D. C. (1994) Feature-linked synchronization of thalamic relay cell firing induced by feedback from the visual cortex. Nature 369(6480):479–82.CrossRefGoogle ScholarPubMed
Snyder, L. (1999) This way up: Illusions and internal models in the vestibular system. Nature Neuroscience 2(5):396–98.CrossRefGoogle ScholarPubMed
Sparks, D. L. & Jay, M. F. (1986) The functional organization of the primate superior colliculus: a motor perspective. Progress in Brain Research 64:235–41.CrossRefGoogle ScholarPubMed
Sparks, D. L., Lee, C. & Rohrer, W. H. (1990) Population coding of the direction, amplitude, and velocity of saccadic eye movements by neurons in the superior colliculus. Cold Spring Harbor Symposium on Quantitative Biology 55:805–11.CrossRefGoogle ScholarPubMed
Sperry, R. W. (1950) Neural basis of the spontaneous optokinetic response produced by visual inversion. Journal of Comparative and Physiological Psychology 43:482–89.CrossRefGoogle ScholarPubMed
Sperry, R. W. (1952) Neurology and the mind-brain problem. American Scientist 40:291312.Google Scholar
Sterzer, P. & Kleinschmidt, A. (2007) A neural basis for inference in perceptual ambiguity. Proceedings of the National Academy of Sciences USA 104(1):323–28.CrossRefGoogle ScholarPubMed
Stoerig, P. & Cowey, A. (1997) Blindsight in man and monkey. Brain 120(Part 3):535–59.CrossRefGoogle ScholarPubMed
Stratton, G. M. (1896) Some preliminary experiments on vision without inversion of the retinal image. Psychological Review 3:611–17.CrossRefGoogle Scholar
Stürmer, B., Aschersleben, G. & Prinz, W. (2000) Correspondence effects with manual gestures and postures: A study of imitation. Journal of Experimental Psychology: Human Perception and Performance 26(6):1746–59.Google ScholarPubMed
Sun, H. & Frost, B. J. (1998) Computation of different optical variables of looming objects in pigeon nucleus rotundus neurons. Nature Neuroscience 1(4):296303.CrossRefGoogle ScholarPubMed
Sundberg, K. A., Fallah, M. & Reynolds, J. H. (2006) A motion-dependent distortion of retinotopy in area V4. Neuron 49(3):447–57.CrossRefGoogle ScholarPubMed
Taira, M., Mine, S., Georgopoulos, A. P., Murata, A. & Sakata, H. (1990) Parietal cortex neurons of the monkey related to the visual guidance of hand movement. Experimental Brain Research 83(1):2936.CrossRefGoogle ScholarPubMed
Tessier-Lavigne, M. (2000) Visual processing by the retina. In: Principles of neural science, ed. Kandel, E. R., Schwartz, J. H. & Jessell, T. M.. McGraw Hill.Google Scholar
Thier, P. & Ilg, U. J. (2005) The neural basis of smooth-pursuit eye movements. Current Opinion in Neurobiology 15(6):645–52.CrossRefGoogle ScholarPubMed
Tootell, R. B., Silverman, M. S., Switkes, E. & De Valois, R. L. (1982) Deoxyglucose analysis of retinotopic organization in primate striate cortex. Science 218(4575):902904.CrossRefGoogle ScholarPubMed
Tresilian, J. R. (1993) Four questions of time to contact: A critical examination of research on interceptive timing. Perception 22(6):653–80.CrossRefGoogle ScholarPubMed
Tresilian, J. R. (1999) Visually timed action: time-out for “tau”? Trends in Cognitive Sciences 3(8):301–10.CrossRefGoogle ScholarPubMed
Treue, S. (2003) Climbing the cortical ladder from sensation to perception. Trends in Cognitive Sciences 7(11):469–71.CrossRefGoogle Scholar
van de Grind, W. (2002) Physical, neural, and mental timing. Consciousness and Cognition 11(2):241–64; discussion 308–13.CrossRefGoogle ScholarPubMed
von Holst, E. & Mittelstaedt, H. (1950) Das Reafferenzprinzip. Naturwissenschaften 37:464–76.CrossRefGoogle Scholar
Wagner, H. (1982) Flow-field variables trigger landing in flies. Nature 297:147–48.CrossRefGoogle Scholar
Wald, G. (1968) The molecular basis of visual excitation. Nature 219(5156):800807.CrossRefGoogle ScholarPubMed
Walls, G. L. (1942) The vertebrate eye and its adaptive radiation. Cranbrook Press.Google Scholar
Wang, Y. & Frost, B. J. (1992) Time to collision is signalled by neurons in the nucleus rotundus of pigeons. Nature 356(6366):236–38.CrossRefGoogle ScholarPubMed
Warren, R. M. & Warren, R. P. (1968) Helmholtz on perception: Its physiology and development. Wiley.Google Scholar
Weiskrantz, L. (1996) Blindsight revisited. Current Opinion in Neurobiology 6(2):215–20.CrossRefGoogle ScholarPubMed
Westheimer, G. & McKee, S. P. (1977) Perception of temporal order in adjacent visual stimuli. Vision Research 17(8):887–92.CrossRefGoogle ScholarPubMed
Whitaker, D., Perarson, S., McGraw, P. V. & Banford, M. (1998) Keeping a step ahead of moving objects. Investigative Ophthalmology and Visual Science 39(Suppl):S1078.Google Scholar
Whitney, D. & Murakami, I. (1998) Latency difference, not spatial extrapolation. Nature Neuroscience 1(8):656–57.CrossRefGoogle Scholar
Williams, H. & Nottebohm, F. (1985) Auditory responses in avian vocal motor neurons: a motor theory for song perception in birds. Science 229(4710):279–82.CrossRefGoogle ScholarPubMed
Williams, J. M. & Lit, A. (1983) Luminance-dependent visual latency for the Hess effect, the Pulfrich effect, and simple reaction time. Vision Research 23(2):171–79.CrossRefGoogle ScholarPubMed
Williams, Z. M., Elfar, J. C., Eskandar, E. N., Toth, L. J. & Assad, J. A. (2003) Parietal activity and the perceived direction of ambiguous apparent motion. Nature Neuroscience 6(6):616–23.CrossRefGoogle ScholarPubMed
Wilson, M. & Knoblich, G. (2005) The case for motor involvement in perceiving conspecifics. Psychological Bulletin 131(3):460–73.CrossRefGoogle ScholarPubMed
Witten, I. B., Bergan, J. F. & Knudsen, E. I. (2006) Dynamic shifts in the owl's auditory space map predict moving sound location. Nature Neuroscience 9(11):1439–45.CrossRefGoogle ScholarPubMed
Wolpert, D. M. & Flanagan, J. R. (2001) Motor prediction. Current Biology 11(18):R729–32.CrossRefGoogle ScholarPubMed
Wolpert, D. M., Ghahramani, Z. & Jordan, M. I. (1995) An internal model for sensorimotor integration. Science 269(5232):1880–82.CrossRefGoogle ScholarPubMed
Wolpert, D. M., Miall, R. C. & Kawato, M. (1998) Internal models in the cerebellum. Trends in Cognitive Sciences 2:338–47.CrossRefGoogle ScholarPubMed
Woodworth, R. S. (1899) The accuracy of voluntary movement. Psychological Review 3(2), Whole No. 13.Google Scholar
Woodworth, R. S. & Schlosberg, H. (1954) Experimental psychology. Methuen.Google Scholar
Zanker, J. M., Quenzer, T. & Fahle, M. (2001) Perceptual deformation induced by visual motion. Naturwissenschaften 88(3):129–32.CrossRefGoogle ScholarPubMed
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Visual prediction: Psychophysics and neurophysiology of compensation for time delays
Available formats

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Visual prediction: Psychophysics and neurophysiology of compensation for time delays
Available formats

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Visual prediction: Psychophysics and neurophysiology of compensation for time delays
Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *