Skip to main content Accessibility help
×
Home
Hostname: page-component-cf9d5c678-m9wwp Total loading time: 0.345 Render date: 2021-08-03T02:36:37.197Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

The underrated role of the “move system” in determining saccade latency

Published online by Cambridge University Press:  01 August 1999

Michael C. Dorris
Affiliation:
Medical Research Council Group in Sensory-Motor Neuroscience, Department of Physiology, Queen's University, Kingston, Ontario, Canada K7L 3N6 {mike; doug}@eyeml.queensu.ca brain.phgy.queensu.ca/doug_munoz/dpm.htm
Douglas P. Munoz
Affiliation:
Medical Research Council Group in Sensory-Motor Neuroscience, Department of Physiology, Queen's University, Kingston, Ontario, Canada K7L 3N6 {mike; doug}@eyeml.queensu.ca brain.phgy.queensu.ca/doug_munoz/dpm.htm

Abstract

The Findlay & Walker target article emphasizes the role of the target-nonspecific “fixate” system while downplaying the role of the target-specific “move” system in determining saccade latency. We agree that disengagement of the fixate system is responsible for the target-nonspecific latency reduction associated with the gap effect. However, high target predictability and extensive training at a target location can also result in latency reductions, the culmination of this being express saccades. The target-specificity associated with the latter forms of latency reduction implicate a mechanism involving the move system. Recently discovered neurophysiological correlates underlying these behavioural phenomena reside in the superior colliculus.

Type
Open Peer Commentary
Copyright
© 1999 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
5
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The underrated role of the “move system” in determining saccade latency
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

The underrated role of the “move system” in determining saccade latency
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

The underrated role of the “move system” in determining saccade latency
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *