Skip to main content Accessibility help
Hostname: page-component-99c86f546-45s75 Total loading time: 0.369 Render date: 2021-11-28T21:43:06.682Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Theory testing and the global array

Published online by Cambridge University Press:  15 June 2005

Thomas A. Stoffregen*
School of Kinesiology, Cooke Hall, University of Minnesota, Minneapolis, MN 55455
Benoît G. Bardy*
Université Paris Sud-11, Center for Research in Sport Sciences, 91405 Orsay Cedex, France


The new commentaries raise important issues about the target article (Stoffregen & Bardy 2001). The commentaries also highlight some assumptions, often implicit, that underlie traditional interpretations of perception. We argue that evaluation of the global array and its implications for perception requires both analytical research on specification in the global array and new empirical research on the use of information in the global array for the control of action.

Authors' Response
Copyright © Cambridge University Press 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Commentary on T. A. Stoffregen & B. G. Bardy (2001). On specification and the senses. BBS 24(2):195–261.


Amazeen, E. L. (1997) The effects of volume on perceived heaviness by dynamic touch: With and without vision. Ecological Psychology 9:245–63.[L W-E]Google Scholar
Amblard, B., Cremieux, J., Marchand, A. R. & Carblanc, A. (1985) Lateral orientation and stabilization of human stance: Static versus dynamic visual cues. Experimental Brain Research 31:2137.[TO]Google Scholar
Asch, S. E. & Witkin, H. A. (1948) Studies in space orientation: I. Perception of the upright with displaced visual fields. Journal of Experimental Psychology 38:325–37.[TO]Google Scholar
Ashby, F. G. & Townsend, J. T. (1986) Varieties of perceptual independence. Psychological Review 93:154–79.[ELA]Google Scholar
Berg, H. C. (2000) Motile behavior of bacteria. Physics Today 53:2429.[rT AS]Google Scholar
Berkeley, G. (1709) Essay towards a new theory of vision. Printed by Aaron Rhames for Jeremy PepJyTaSt.][Google Scholar
Berkeley, G. (1713) Three dialogues between Hylas and Philonous. Printed by G. James for H. Clements. [JTS]Google Scholar
Berkeley, G. (1733) The theory of vision, or Visual language. Printed for J. Tonson. [JTS]Google Scholar
Bertelson, P., Vroomen, J., Wiegeraad, G. & de Gelder, B. (1994) Exploring the relation between McGurk interference and ventriloquism. Proceedings of the International Conference on Spoken Language Processing, Yokohama (Japan) 2:559–62.[MR]Google Scholar
Berthoz, A. (1997) Le sens du mouvement [The sense of movement]. Odile Jacob. [rTAS]Google Scholar
Bingham, G. P. & Stassen, M. G. (1994) Monocular egocentric distance information generated by head movement. Ecological Psychology 6:219–38. [rTAS]Google Scholar
Bootsma, R. J. (1989) Accuracy of perceptual processes subserving different perception-action systems. Quarterly Journal of Experimental Psychology 41A:489500.[rT AS]Google Scholar
Bower, T. G. R. (1974) Development in infancy. W. H. Freeman. [MR]Google Scholar
Bregman, A. S. (1990) Auditory scene analysis. MIT Press.[MR]Google Scholar
Brenner, E. & Smeets, J. B. J. (2001) We are better off without perfect perception. Behavioral and Brain Sciences 24(2):215–16.[rT AS]Google Scholar
Cabe, P. A. (2001) Absolutist array specification and species survival: An ecological perspective on ecological perception. Behavioral and Brain Sciences 24(2):217.[rT AS]Google Scholar
Changeux, J. P. & Dehaene, S. (1989) Neuronal models of cognitive functions. Cognition 33:63109.[MR]Google Scholar
Colin, C., Radeau, M., Deltenre, P. & Morais, J. (2001) Rules of intersensory integration in spatial scene analysis and speechreading. Psychologica Belgica 41:131–44.[MR]Google Scholar
De Volder, A. G., Catalan-Ahumada, M., Robert, A., Bol, A., Labar, D., Coppens, A., Michel, C. & Veraart, C. (1999) Changes in occipital cortex activity in early blind humans using a sensory substitution device. Brain Research 826:128–34.[TO]Google Scholar
Dichgans, J. & Brandt, T. (1978) Visual-vestibular interaction: Effects on selfmotion perception and postural control. In: Handbook of sensory physiology, vol. 8: Perception, ed. Held, R., Leibowitz, H. & Teuber, H., pp. 755804. Springer.[A VP]Google Scholar
Edelman, G. (1987) Neural Darwinism. Basic Books.[MR]Google Scholar
Fajen, B. R. & Warren, W. H. (2003) Behavioral dynamics of steering, obstacle avoidance and route selection. Journal of Experimental Psychology: Human Perception and Performance 29:342–62.[rT AS]Google Scholar
Fouqué, F., Bardy, B. G., Stoffregen, T. A. & Bootsma, R. J. (1999) Action and intermodal information influence the perception of orientation. Ecological Psychology 11:143.[L W-E, ArTS]Google Scholar
Frost, D. O. (1990) Sensory processing in novel, experimentally induced crossmodal circuits. In: The development and neural bases of higher cognitive functions, ed. Diamond, A.. Annals of the New York Academy of Sciences 608:92112.[MR]Google Scholar
Gibson, E. J. & Pick, A. (2000) An ecological approach to perceptual learning and development. Oxford University Press.[ArTS]Google Scholar
Gibson, J. J. (1958) Visually controlled locomotion and visual orientation in animals. British Journal of Psychology 49:182–94.[rT AS]Google Scholar
Gibson, J. J. (1966) The senses considered as perceptual systems. Houghton Mifflin.[AVP, MR, rTAS]Google Scholar
Gibson, J. J. (1968) What gives rise to the perception of motion? Psychological Review 75:335–46.[A VP]Google Scholar
Gottlieb, G., Tomlinson, W. T. & Radell, P. L. (1989) Developmental intersensory interference: Premature visual experience suppresses auditory learning in ducklings. Infant Behavior and Development 12:112.[MR]Google Scholar
Guerraz, M., Poquin, D. & Ohlmann, T. (1998) Head centric reference and static versus kinetic visual disturbances. Perception & Psychophysics 60:287–95. [TO]Google Scholar
Innocenti, G. M. & Clarke, S. (1984) Bilateral transitory projection to visual areas from auditory cortex in kittens. Developmental Brain Research 14:143–48. [MR]Google Scholar
Isableu, B., Amblard, B., Ohlmann, T. & Cremieux, J. (1997) Selection of spatial frame of reference and postural control variability. Experimental Brain Research 114:584–89.[TO]Google Scholar
Isableu, B., Amblard, B., Ohlmann, T. & Cremieux, J. (1998) How dynamic visual field dependence-independence interacts with the visual contribution to postural control. Human Movement Science 17:367–91. [TO]Google Scholar
Jessop, T. E., ed. (1937) The principles of human knowledge, by George Berkeley … the text of the first edition (1710) with the variants in the second (1734) and in an autograph manuscript. A. Brown. [JTS]Google Scholar
Jordan, T. R. & Bevan, K. (1997) Seeing and hearing rotated faces: Influences of facial orientation on visual and audiovisual speech recognition. Journal of Experimental Psychology: Human Perception and Performance 23:338403. [MR]Google Scholar
Kellogg, W. N. (1962) Sonar system of the blind. Science 137:399404.[rT AS]Google Scholar
Kennedy, H. & Dehay, C. (1993) The relevance of primate corticogenesis for understanding the emergence of cognitive abilities in man. In: Developmental neurocognition: Speech and face processing in the first year of life, ed. de Boysson-Bardies, B., de Schonen, S., Jusczyk, P., McNeilage, P. & Morton, J., pp. 1730. Kluwer. [MR]Google Scholar
Kimura, M. (1968) Evolutionary rate at the molecular level. Nature 17:624–26. [TO]Google Scholar
Kimura, M. & Ota, T. (1972) Mutation and evolution at the molecular level. Genetics Supplement 73:1935.[TO]Google Scholar
King, A. J. & Carlile, S. (1993) Changes induced in the representation of auditory space in the superior colliculus by rearing ferrets with binocular eyelid suture. Experimental Brain Research 94:444–55.[MR]Google Scholar
Knudsen, E. I., Esterly, S. D. & du Lac, S. (1991) Stretched and upside-down maps of auditory space in the optic tectum of blind-reared owls: Acoustic basis and behavioral correlates. The Journal of Neuroscience 11:1727–47.[MR]Google Scholar
Knudsen, E. I. & Knudsen, P. F. (1989) Vision calibrates sound in developing barn owls. The Journal of Neuroscience 9:3306–13.[MR, rTAS]Google Scholar
Kujala, T., Alho, K., Kekoni, J., Hämäläinen, M. S., Reininkainen, K., Salonen, O., Standertskjöld-Nordenstam, C.-G. & Näätänen, R. (1995) Auditory and somatosensory event-related brain potentials in early blind humans. Experimental Brain Research 104:519–26.[MR]Google Scholar
Kujala, T., Alho, K., Paavailainen, P., Summala, H. & Näätänen, R. (1992) Neural plasticity in processing of sound location by the early blind: An event-related potential study. Electroencephalography and Clinical Neurophysiology 84:469–72.[MR]Google Scholar
Lacour, M., Barthélémy, J., Borel, L., Magnan, J., Xerri, C., Chays, A. & Ouaknine, M. (1997) Sensory strategies in human postural control before and after unilateral vestibular neurotomy. Experimental Brain Research 115:300–10.[TO]Google Scholar
Lee, D. N. & Aronson, E. (1974) Visual proprioceptive control of standing in human infants. Perception & Psychophysics 15:529–32.[A VP]Google Scholar
Lee, D. N. & Lishman, J. R. (1975) Visual proprioceptive control of stance. Journal of Human Movement Studies 1:8795.[ELA, AVP, ArTS]Google Scholar
Lewkowicz, D. J. & Turkewitz, G. (1980) Cross-modal equivalence in early infancy: Auditory-visual intensity matching. Developmental Psychology 16:597607. [MR]Google Scholar
Lickliter, R. & Banker, H. (1994) Prenatal components of intersensory development in precocial birds. In: The development of intersensory perception, ed. Lewkowicz, D. J. & Lickliter, R., pp. 5980. Erlbaum. [MR]Google Scholar
Lishman, J. R. & Lee, D. N. (1973) The autonomy of visual kinaesthesis. Perception 2:287–94.[A VP, ArTS]Google Scholar
Mandler, G. (1985) Cognitive psychology: An essay in cognitive science. Erlbaum. [ELA]Google Scholar
Marks, L. (1975) On colored-hearing synesthesia: Cross-modal translations of sensory dimensions. Psychological Bulletin 82:303–31.[MR]Google Scholar
Marks, L. (1978) The unity of the senses. Academic Press.[MR]Google Scholar
Massaro, D. W. & Cohen, M. M. (1996) Perceiving speech from inverted faces. Perception and Psychophysics 58:1047–65.[MR]Google Scholar
Maurer, D. (1993) Neonatal synesthesia: Implications for the processing of speech and faces. In: Developmental neurocognition: Speech and face processing in the first year of life, ed. de Boysson-Bardies, B., de Schonen, S., Jusczyk, P., McNeilage, P. & Morton, J., pp. 109–24. Kluwer. [MR]Google Scholar
McGurk, H. & McDonald, J. (1976) Hearing lips and seeing voices. Nature 264:746–48.[MR]Google Scholar
McMichael, K. & Bingham, G. P. (2001) Functional separation of the senses is a requirement of perception/action research. Behavioral and Brain Sciences 24(2):227–28.[rT AS]Google Scholar
Meltzoff, A. N. & Moore, M. K. (1977) Imitation of facial and manual gestures by human neonates. Science 198:7578.[ JTS]Google Scholar
Meltzoff, A. N. & Moore, M. K. (1983a) The origins of imitation in infancy: Paradigm, phenomena, and theories. In: Advances in Infancy Research, vol. 2, ed. Lipsitt, L. P.. Ablex. [JTS]Google Scholar
Meltzoff, A. N. & Moore, M. K. (1983b) Newborn infants imitate adult facial gestures. Child Development 54:702–09.[ JTS]Google Scholar
Meredith, M. A. & Stein, B. E. (1986) Visual, auditory, and somatosensory convergence on cells in superior colliculus in multisensory integration. Journal of Neurophysiology 56:640–62.[rT AS]Google Scholar
Michaels, C. F. & Oudejans, R. R. D. (2001) Energy, information, detection, and action. Behavioral and Brain Sciences 24(2):230–31.[rT AS]Google Scholar
Mittelstaedt, H. (1997) Interaction of eye head and trunk-bound information in spatial perception and control. Journal of Vestibular Research 7:283302. [TO]Google Scholar
Montagne, G., Laurent, M. & Durey, A. (1999) Movement reversal in ball catching. Experimental Brain Research 129:8792.[rT AS]Google Scholar
Neimer, J., Eskiizmirliler, S., Ventre-Dominey, J., Darlot, C., Luyat, M., Gresty, M. A. & Ohlmann, T. (2001) Trains with a view to sickness. Current Biology 11:549–50.[TO]Google Scholar
Neville, H. J. (1990) Intermodal competition and compensation in development. Evidence from studies of the visual system in congenitally deaf adults. In: The development and neural bases of higher cognitive functions, ed. A. Diamond. Annals of the New York Academy of Sciences 608:7191.[MR]Google Scholar
Neville, H. J. (1995) Developmental specificity in neurocognitive development in humans. In: The cognitive neurosciences, ed. Gazzaniga, M., pp. 219–36. MIT Press. [MR]Google Scholar
Ohlmann, T. & Marendaz, C. (1991) Vicarious processes involved in spatial perception. In: Bio-psycho-social factors in cognitive style, ed. Wapner, S.. Erlbaum.[TO]Google Scholar
Oullier, O., Bardy, B. G., Stoffregen, T. A. & Bootsma, R. J. (2002) Postural coordination in looking and tracking tasks. Human Movement Science 21:147–67.[rT AS]Google Scholar
Oullier, O., Bardy, B. G., Stoffregen, T. A. & Bootsma, R. J. (2004) Task-specific stabilization of postural coordination during stance on a beam. Motor Control 7:174–87.[rT AS]Google Scholar
Pagano, C. C., Carello, C. & Turvey, M. T. (1996) Exteroception and exproprioception by dynamic touch are different functions of the inertia tensor. Perception and Psychophyics 58:1191–202.[TO]Google Scholar
Pedersen, A. V. (1999) Conflicting perceptual information in postural control: A question of dominance or opportunity. Corpus, Psyche et Societas (Special issue): Human Movement Science in Perspective 6:7793.[A VP]Google Scholar
Pedersen, A. V. (2000) Perceptual conflicts in postural control: Is there a dominant system? In: Advances in perception-action research: Proceedings of the EWEP 6, European Workshop on Ecological Psychology, Trondheim, Norway, eds. Vereijken, B., van der Meer, A., van der Weel, R. & Kayed, N. S., pp. 5356. NTNU.[A VP]Google Scholar
Peper, C. E. & Beek, P. J. (2001) Direct perception of global invariants is not a fruitful notion. Behavioral and Brain Sciences 24(2):235.[rT AS]Google Scholar
Peper, L., Bootsma, R. J., Mestre, D. R. & Bakker, F. C. (1994) Catching balls: How to get the hand to the right place at the right time. Journal of Experimental Psychology: Human Perception & Performance 20:591612. [rTAS]Google Scholar
Pick, H. L. (1974) Visual coding of non visual spatial information. In: Perception, ed. MacLeod, R. B. & Pick, H. L.. Cornell University Press. [TO]Google Scholar
Pittenger, J. B. & Dent, C. H. (1988) A mechanism for the direct perception of change: The example of bacterial chemotaxis. Perception 17:119–33.[rT AS]Google Scholar
Poremba, A., Saunders, R. C., Crane, A. M., Cook, M., Sokoloff, L. & Mishkin, M. (2003) Functional mapping of the primate auditory system. Science 299:568–72.[MR]Google Scholar
Radeau, M. (1994a) Auditory-visual spatial interaction and modularity. Cahiers de Psychologie Cognitive 13:151.[MR]Google Scholar
Radeau, M. (1994b) Ventriloquism against audio-visual speech: Or, where Japanese speaking barn owls might help. Cahiers de Psychologie Cognitive 13:124–40.[MR]Google Scholar
Radeau, M. & Bertelson, P. (1974) The aftereffects of ventriloquism. Quarterly Journal of Experimental Psychology 26:6371.[MR, rTAS]Google Scholar
Radeau, M. & Bertelson, P. (1977) Adaptation to auditory-visual discordance and ventriloquism in semirealistic situations. Perception and Psychophysics 22:137–46.[MR, rTAS]Google Scholar
Rebillard, G., Rebillard, M. & Pujol, R. (1980) Factors affecting the recording of visual-evoked potentials from the deaf cat primary auditory cortex (AI). Brain Research 188:252–54.[MR]Google Scholar
Reuchlin, M. (1978) Processus vicariants et différences interindividuelles. Journal de Psychologie 2:133–45.[TO]Google Scholar
Riccio, G. E., Martin, E. J. & Stoffregen, T. A. (1992) The role of balance dynamics in the active perception of orientation. Journal of Experimental Psychology: Human Perception and Performance 18:624–44.[TO]Google Scholar
Rice, C. E. (1967) Human echo perception. Science 155:656–64.[rT AS]Google Scholar
Rosenblum, L. D. & Gordon, M. S. (2001) The generality of specificity: Some lessons from audiovisual speech. Behavioral and Brain Sciences 24(2):239–40. [rTAS]Google Scholar
Runeson, S. (1988) The distorted room illusion, equivalent configurations, and the specificity of statis optic arrays. Journal of Experimental Psychology: Human Perception & Performance 14:295304.[rT AS]Google Scholar
Runeson, S., Jacobs, D. M., Andersson, I. E. K. & Kreegipuu, K. (2001) Specificity is always contingent on constraints: Global versus individual arrays is not the issue. Behavioral and Brain Sciences 24(2):240–41.[rT AS]Google Scholar
Runeson, S. & Vedeler, D. (1993) The indispensability of precollision kinematics in the visual perception of relative mass. Perception and Psychophysics 53:617–32.[rT AS]Google Scholar
Saito, H., Yukie, M., Tanaka, K., Hikosaka, K., Fukada, Y. & Iwai, E. (1986) Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey. The Journal of Neuroscience 6:145–57. [rTAS]Google Scholar
Sanders, J. T. (forthcoming) From perception to metaphysics: Berkeley and Merleau-Ponty. [JTS]Google Scholar
Schull, J. (1990) Are species intelligent ? Behavioral and Brain Sciences 13:63108.[TO]Google Scholar
Skinner, B. F. (1984) Selection by consequences. Behavioral and Brain Sciences 7:477510.[TO]Google Scholar
Spear, N. E. & McKinzie, D. L. (1994) Intersensory integration in the infant rat. In: The development of intersensory perception, ed. Lewkowicz, D. J. & Lickliter, R., pp. 133–61. Erlbaum. [MR]Google Scholar
Stein, B. E. & Meredith, M. A. (1993) The merging of the sense. MIT Press. [MR, rTAS]Google Scholar
Stein, B. E., Wallace, M. T. & Stanford, T. R. (2000) Merging sensory signals in the brain: The development of multisensory integration in the superior colliculus. In: The new cognitive neurosciences, ed. Gazzaniga, M.. MIT Press. [MR]Google Scholar
Stoffregen, T. A. (1985) Flow structure versus retinal location in the optical control of stance. Journal of Experimental Psychology: Human Perception and Performance 11:554–65.[rT AS]Google Scholar
Stoffregen, T. A. (1986) The role of optical velocity in the control of stance. Perception and Psychophysics 39:355–60.[rT AS]Google Scholar
Stoffregen, T. A. & Bardy, B. G. (2001) On specification and the senses. Behavioral and Brain Sciences 24:195261.[ELA, TO, VAP, MR, ASr,T WL-E]Google Scholar
Stoffregen, T. A. & Bardy, B. G. (2001) (in preparation) The emergence of multisensory perceptual information within the nervous system.[ArTS]Google Scholar
Stoffregen, T. A., Bardy, B. G., Merhi, O. & Oullier, O. (2004) Postural responses to two technologies for generating optical flow. Presence 13:601–15 [rTAS]Google Scholar
Stoffregen, T. A., Bardy, B. G., Smart, L. J. & Pagulayan, R. J. (2003) On the nature and evaluation of fidelity in virtual environments. In: Virtual and adaptive environments: Applications, implications, and human performance issues, ed. Hettinger, L. J. & Haas, M. W.. Erlbaum. [rTAS]Google Scholar
Stoffregen, T. A. & Riccio, G. E. (1988) An ecological theory of orientation and the vestibular system. Psychological Review 95:314.[TO, rTAS]Google Scholar
Stoffregen, T. A. & Riccio, G. E. (1991) An ecological critique of the sensory conflict theory of motion sickness. Ecological Psychology 3:159–94.[TO]Google Scholar
Stoffregen, T. A. & Smart, L. J. (1998) Postural instability precedes motion sickness. Brain Research Bulletin 47:437–48.[rT AS]Google Scholar
Tanaka, K. & Saito, H. (1989) Analysis of motion of the visual field by direction, expansion/contraction, and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey. Journal of Neurophysiology 62:626–41.[rT AS]Google Scholar
Thomas, N. J. T. (2001) Perceptual systems: Five_, one, or many? Behavioral and Brain Sciences 24(2):241–42.[rT AS]Google Scholar
Ungerleider, L. G. & Mishkin, M. (1982) Two cortical visual systems. In: The analysis of visual behaviour, ed. Ingle, D. J., Goodale, M. A. & Mansfield, R. J., pp. 549–86. MIT Press. [MR]Google Scholar
Van Orden, G. C. & Jansen op de Haar, M. A. (2000) Schneider's apraxia and the strained relation between experience and description. Philosophical Psychology 13:247–59.[ELA]Google Scholar
Waespe, W. & Henn, V. (1977) Neuronal activity in the vestibular nuclei of the alert monkey during vestibular and opto-kinetic stimulation. Experimental Brain Research 27:523–38.[TO]Google Scholar
Waespe, W. & Henn, V. (1979) The early response of the vestibular nucleus neurons during vestibular, visual and combined angular acceleration. Experimental Brain Research 37:337–47.[TO]Google Scholar
Walker, S., Bruce, V. & O’Malley, C. (1995) Facial identity and facial speech processing: familiar faces and voices in the McGurk effect. Perception and Psychophysics 57:1124–33.[MR]Google Scholar
Wallace, M. T., Meredith, M. A. & Stein, B. E. (1992) Integration of multiple sensory modalities in cat cortex. Experimental Brain Research 91:484–88. [rTAS]Google Scholar
Wallace, M. T., Ramachandran, R. & Stein, B. E. (2004) A revised view of sensory cortical parcellation. Proceedings of the National Academy of Sciences USA 101:2167–72.[rT AS]Google Scholar
Wallach, H. (1940) The role of head movements and vestibular and visual cues in sound localization. Journal of Experimental Psychology 27:339–68.[rT AS]Google Scholar
Warren, W. H. (1988) Action modes and laws of control for the visual guidance of action. In: Movement behavior: The motor-action controversy, ed. Meijer, O. & Roth, K., pp. 339–79. North-Holland. [rTAS]Google Scholar
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Theory testing and the global array
Available formats

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Theory testing and the global array
Available formats

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Theory testing and the global array
Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *