Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-s4m2s Total loading time: 0.184 Render date: 2021-10-24T23:23:10.237Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Predictive perceptions, predictive actions, and beyond

Published online by Cambridge University Press:  14 May 2008

Romi Nijhawan
Affiliation:
Department of Psychology, University of Sussex, Falmer, East Sussex BN1 9QH, United Kingdom. romin@sussex.ac.ukhttp://www.sussex.ac.uk/psychology/profile116415.html

Abstract

Challenges to visual prediction as an organizing concept come from three main sources: (1) from observations arising from the results of experiments employing unpredictable motion, (2) from the assertions that motor processes compensate for all neural delays, and (3) from multiple interpretations specific to the flash-lag effect. One clarification that has emerged is that visual prediction is a process that either complements or reflects non-visual (e.g., motor) prediction.

Type
Author's Response
Copyright
Copyright ©Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baldo, M. V. C. & Klein, S. A. (1995) Extrapolation or attention shift? Nature 378(6557):565–66.CrossRefGoogle ScholarPubMed
Barlow, H. B. (1953) Summation and inhibition in the frog's retina. Journal of Physiology 119:6988.CrossRefGoogle ScholarPubMed
Barlow, H. B. & Pettigrew, J. D. (1971) Lack of specificity of neurones in the visual cortex of young kittens. Journal of Physiology 218(1):98P100P.Google ScholarPubMed
Berry, M. J., Brivanlou, I. H., Jordan, T. A. & Meister, M. (1999) Anticipation of moving stimuli by the retina. Nature 398(6725):334–38.CrossRefGoogle ScholarPubMed
Blair, H. T. & Sharp, P. E. (1995) Anticipatory head direction signals in anterior thalamus: evidence for a thalamocortical circuit that integrates angular head motion to compute head direction. Journal of Neuroscience 15(9):6260–70.CrossRefGoogle ScholarPubMed
Blakemore, C. & Cooper, G. F. (1970) Development of the brain depends on the visual environment. Nature 228(5270):477–78.CrossRefGoogle ScholarPubMed
Brenner, E. & Smeets, J. B. (2000) Motion extrapolation is not responsible for the flash-lag effect. Vision Research 40(13):1645–48.CrossRefGoogle Scholar
Brooks, R. (1991) Intelligence without representation. Artificial Intelligence 47:139–59.CrossRefGoogle Scholar
Butts, D. A., Feller, M. B., Shatz, C. J. & Rokhsar, D. S. (1999) Retinal waves are governed by collective network properties. Journal of Neuroscience 19(9):3580–93.CrossRefGoogle ScholarPubMed
Chawla, D., Friston, K. J. & Lumer, E. D. (2001) Zero-lag synchronous dynamics in triplets of interconnected cortical areas. Neural Networks 14(6–7):727–35.CrossRefGoogle ScholarPubMed
Coppola, D. & Purves, D. (1996) The extraordinarily rapid disappearance of entopic images. Proceedings of the National Academy of Sciences USA 93(15):80018004.CrossRefGoogle Scholar
Coren, S. & Girgus, J. S. (1973) Visual spatial illusions: Many explanations. Science 179(72):503504.CrossRefGoogle ScholarPubMed
De Valois, R. L., & De Valois, K. K. (1991) Vernier acuity with stationary moving Gabors. Vision Research 31(9):1619–26.CrossRefGoogle ScholarPubMed
Eagleman, D. M. & Sejnowski, T. J. (2000) Motion integration and postdiction in visual awareness. Science 287(5460):2036–38.CrossRefGoogle ScholarPubMed
Eagleman, D. M. & Sejnowski, T. J. (2007) Motion signals bias localization judgments: a unified explanation for the flash-lag, flash-drag, flash-jump, and Frohlich illusions. Journal of Vision 7(4):3, 112.CrossRefGoogle ScholarPubMed
Erlhagen, W. (2003) Internal models for visual perception. Biological Cybernetics 88(5):409–17.CrossRefGoogle ScholarPubMed
Fawcett, J. W. & O'Leary, D. M. (1985) The role of electrical activity in the formation of topographical maps in the nervous system. Trends in Neuroscience 8:201206.CrossRefGoogle Scholar
Fukushima, K., Yamanobe, T., Shinmei, Y. & Fukushima, J. (2002) Predictive responses of periarcuate pursuit neurons to visual target motion. Experimental Brain Research 145(1):104–20.CrossRefGoogle ScholarPubMed
Gregory, R. (1979) Eye and brain, Weidenfeld and Nicholson.Google Scholar
Grzywacz, N. M. & Amthor, F. R. (1993) Facilitation in ON-OFF directionally selective ganglion cells of the rabbit retina. Journal of Neurophysiology 69(6):2188–99.CrossRefGoogle ScholarPubMed
Holy, T. E. (2007) A public confession: The retina trumpets its failed predictions. Neuron 55(6):831–32.CrossRefGoogle ScholarPubMed
Hubel, D. H. & Wiesel, T. N. (1959) Receptive fields of single neurons in the cat's striate cortex. Journal of Physiology 148:574–91.CrossRefGoogle ScholarPubMed
Kandel, E. R. & Wurtz, R. H. (2000) Constructing the visual image. In: Principles of neural science, ed. Kandel, E. R., Schwartz, J. H. & Jessell, T. M.. McGraw Hill.Google Scholar
Khurana, B. & Nijhawan, R. (1995) Extrapolation or attention shift? Reply to Baldo and Klein. Nature 378:565–66.CrossRefGoogle Scholar
Khurana, B., Watanabe, K. & Nijhawan, R. (2000) The role of attention in motion extrapolation: Are moving objects “corrected” or flashed objects attentionally delayed? Perception 29(6):675–92.CrossRefGoogle ScholarPubMed
Kosslyn, S. M. & Sussman, A. (1994) Roles of imagery in perception: Or, there is no such thing as immaculate perception. In: The cognitive neurosciences, ed. Gazzaniga, M. S.. MIT Press.Google Scholar
Kosslyn, S. M., Thompson, W. L., Kim, I. J. & Alpert, N. M. (1995) Topographical representations of mental images in primary visual cortex. Nature 378(6556):496–98.CrossRefGoogle ScholarPubMed
Krekelberg, B. & Lappe, M. (2001) Neuronal latencies and the position of moving objects. Trends in Neurosciences 24:335–39.CrossRefGoogle ScholarPubMed
Mates, J., Muller, U., Radil, T. & Poppel, E. (1994) Temporal integration in sensorimotor synchronization. Journal of Cognitive Neuroscience 6:332–40.CrossRefGoogle ScholarPubMed
Maus, G. W. & Nijhawan, R. (2006) Forward displacements of fading objects in motion: The role of transient signals in perceiving position. Vision Research 46(26):4375–81.CrossRefGoogle ScholarPubMed
Maus, G. W. & Nijhawan, R. (in press) Going going gone: Localizing abrupt offsets of moving objects. Journal of Experimental Psychology: Human Perception and Performance.Google Scholar
Meister, M., Wong, R. O., Baylor, D. A. & Shatz, C. J. (1991) Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina. Science 252(5008):939–43.CrossRefGoogle ScholarPubMed
Mountcastle, V. B., Motter, B. C., Steinmetz, M. A. & Duffy, C. J. (1984) Looking and seeing: the visual functions of the parietal lobe. In: Dynamic aspects of neocortical function, ed. Edelman, G. M., Gall, W. E. & Cowan, W. M., pp. 159–93. Wiley.Google Scholar
Nakayama, K. (1985) Biological image motion processing: a review. Vision Research 25(5):625–60.CrossRefGoogle ScholarPubMed
Neisser, U. (1976) Cognition and reality: Principles and implications of cognitive psychology. W.H. Freeman.Google Scholar
Neuenschwander, S., Castelo-Branco, M., Baron, J. & Singer, W. (2002) Feed-forward synchronization: propagation of temporal patterns along the retinothalamocortical pathway. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences 357(1428):1869–76.CrossRefGoogle ScholarPubMed
Nijhawan, R. (1994) Motion extrapolation in catching. Nature 370(6487):256–57.CrossRefGoogle ScholarPubMed
Nijhawan, R. (1997) Visual decomposition of colour through motion extrapolation. Nature 386(6620):6669.CrossRefGoogle ScholarPubMed
Nijhawan, R. (2001) The flash-lag phenomenon: object-motion and eye-movements. Perception 30:263–82.CrossRefGoogle ScholarPubMed
Nijhawan, R. (2002) Neural delays, visual motion and the flash-lag effect. Trends in Cognitive Sciences 6:387–93.CrossRefGoogle ScholarPubMed
Nijhawan, R. & Khurana, B. (2002) Motion, space and mental imagery. Behavioral and Brain Sciences 25:203204.CrossRefGoogle Scholar
Nunes, G. (2003) Comment on “Eyesight and the solar Wein peak,” by James M, Overduin. American Journal of Physics 71:519.CrossRefGoogle Scholar
Purushothaman, G., Patel, S. S., Bedell, H. E. & Öğmen, H. (1998) Moving ahead through differential visual latency. Nature 396(6710):424.CrossRefGoogle ScholarPubMed
Ramachandran, V. S. & Anstis, S. M. (1990) Illusory displacement of equiluminous kinetic edges. Perception 19(5):611–16.CrossRefGoogle ScholarPubMed
Ratliff, F. (1965) Mach bands: Quantitative studies on neural networks in the retina. Holden-Day.Google Scholar
Sarlegna, F. R., Gauthier, G. M., Bourdin, C., Vercher, J. L. & Blouin, J. (2006) Internally driven control of reaching movements: A study on a proprioceptively deafferented subject. Brain Research Bulletin 69(4):404–15.CrossRefGoogle ScholarPubMed
Schwartz, G., Taylor, S., Fisher, C., Harris, R. & Berry, M. J., 2nd. (2007b) Synchronized firing among retinal ganglion cells signals motion reversal. Neuron 55(6):958–69.CrossRefGoogle ScholarPubMed
Shi, Z. & Nijhawan, R. (under review) Behavioral significance of motion direction causes anisotropic flash-lag, flash-mislocalization and movement-mislocalization effects. Journal of Vision.Google Scholar
Sillito, A. M., Jones, H. E., Gerstein, G. L. & West, D. C. (1994) Feature-linked synchronization of thalamic relay cell firing induced by feedback from the visual cortex. Nature 369(6480):479–82.CrossRefGoogle ScholarPubMed
Snyder, L. (1999) This way up: Illusions and internal models in the vestibular system. Nature Neuroscience 2(5):396–98.CrossRefGoogle ScholarPubMed
Sugita, Y. & Suzuki, Y. (2003) Audiovisual perception: Implicit estimation of sound-arrival time. Nature 421(6926):911.CrossRefGoogle ScholarPubMed
Taube, J. S., Muller, R. U. & Ranck, J. B. Jr. (1990) Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. Journal of Neuroscience 10(2): 420–35.CrossRefGoogle Scholar
Tresilian, J. R. (1993) Four questions of time to contact: A critical examination of research on interceptive timing. Perception 22(6):653–80.CrossRefGoogle ScholarPubMed
Wexler, M. & Klam, F. (2001) Movement prediction and movement production. Journal of Experimental Psychology: Human Perception and Performance 27(1):4864.Google ScholarPubMed
Whitney, D. (2002) The influence of visual motion on perceived position. Trends in Cognitive Sciences 6(5):211–16.CrossRefGoogle ScholarPubMed
Whitney, D. & Cavanagh, P. (2000) Motion distorts visual space: shifting the perceived position of remote stationary objects. Nature Neuroscience 3:954–59.CrossRefGoogle ScholarPubMed
Whitney, D. & Murakami, I. (1998) Latency difference, not spatial extrapolation. Nature Neuroscience 1(8):656–57.CrossRefGoogle Scholar
Wickelgren, L. W. (1969) The ocular response of human newborns to intermittent visual movement. Journal of Experimental Child Psychology 8(3):469–82.CrossRefGoogle ScholarPubMed
Wiesel, T. N. & Hubel, D. H. (1963) Single-cell responses in striate cortex of kittens deprived of vision in one eye. Journal of Neurophysiology 26:1003–17.CrossRefGoogle ScholarPubMed
Wilson, M. & Knoblich, G. (2005) The case for motor involvement in perceiving conspecifics. Psychological Bulletin 131(3):460–73.CrossRefGoogle ScholarPubMed
3
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Predictive perceptions, predictive actions, and beyond
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Predictive perceptions, predictive actions, and beyond
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Predictive perceptions, predictive actions, and beyond
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *