Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-23T18:15:40.253Z Has data issue: false hasContentIssue false

Further evidence for the involvement of nitric oxide in trans-ACPD-induced suppression of AMPA responses in cultured chick Purkinje neurons

Published online by Cambridge University Press:  19 May 2011

Junko Mori-Okamoto
Department of Physiology, National Defense Medical College, Tokorozawa, Saitama 359, Japan.
Koichi Okamoto
Department of Pharmacology, National Defense Medical College, Tokorozawa, Saitama 359, Japan.


In addition to SNP and SIN-1, SNAP suppresses AMPA responses. This suppression is antagonized by carboxy-PTIO in cultured chick cerebellar Purkinje neurons. Intracellular application of cGMP shows a long-lasting suppression of AMPA responses mimicking the cerebellar LTD. These recent results demonstrate that NO can induce LTD-like suppression of AMPA responses and intracellular cGMP and cGMP-dependent protein kinase participate in this suppression. [CRÉPEL et al.; LINDEN; VINCENT]

Open Peer Commentary
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Aas, J.-E. & Brodai, P. (1988) Demonstration of topographically organized projections from the hypothalamus to the pontine nuclei: An experimental study in the cat. Journal of Comparative Neurology 268:313–38. [JDS]CrossRefGoogle Scholar
Abbie, A. A. (1934) The projection of the forebrain on the pons and cerebellum. Proceedings of the Royal Society of London, Series B 115:504–22. [JDS]Google Scholar
Abeles, M. (1991) Corticonics: Neural circuits of the cerebral cortex. Cambridge University Press. [FS]CrossRefGoogle Scholar
Abeliovich, A., Chen, C., Goda, Y., Stevens, C. & Tonegawa, S. (1993a) Modified hippocampal long-term potentiation in PKCγ mutant mice. Cell 75:1253–62. [aMFCan]CrossRefGoogle Scholar
Abeliovich, A., Paylor, R., Chen, C., Kim, J. J., Whener, J. M. & Tonegawa, S. (1993) PKCγ mutant mice exhibit mild deficits in spatial and contextual learning. Cell 75:1263–71. [aMKan]CrossRefGoogle Scholar
Abrams, R. A., Dobkin, R. & Helfrich, M. (1992) Adaptive modification of saccadic eye movements. Journal of Experimental Psychology, Human Perception and Performance 18:922–33. [IIB]CrossRefGoogle ScholarPubMed
Adams, J. A. (1971) A closed-loop theory of motor learning. Journal of Motor Behavior 3:111–49. [aJCH, HB]CrossRefGoogle ScholarPubMed
Adams, J. A. (1977) Feedback theory of how joint receptors regulate the timing and positioning of a limb. Psychological Review 84:504–23. [aJCH]CrossRefGoogle ScholarPubMed
Adrian, E. D. (1943) Afferent areas in the cerebellum connected with the limbs. Brain 66:289315.CrossRefGoogle Scholar
Aggelopoulos, N. C., Duke, C. & Edgley, S. A. (1994) Non-uniform conduction time in the olivocerebellar pathway in the anaesthetized cat. Journal of Physiology (London) 476.P:2627. [aJIS]Google Scholar
Aiba, A., Kano, M., Chen, C., Stanton, M. E., Fox, G. D., Herrup, K., Zwingman, T. A. & Tonegawa, S. (1994) Deficient cerebellar long-term depression and impaired motor learning in mGLuRl mutant mice. Cell 79:377–88. [aJCH, aMKan, MKan, TH, rMKan, rDJL, rSRV]Google Scholar
Akase, E., Alkon, D. L. & Disterhoft, J. F. (1989) Hippocampal lesions impair memory of short-delay conditioned eyeblink in rabbits. Behavioral Neuroscience 103:935–43. [CW]CrossRefGoogle Scholar
Akazawa, K., Milner, T. E., & Stein, R. B. (1983) Modulation of reflex electromyogram and stiffness in response to stretch of human finger muscle. Journal of Neurophysiohgy 49:1627. [aAMS]CrossRefGoogle ScholarPubMed
Akshoomoff, N. A. & Courchesne, E. (1992) A new role for the cerebellum in cognitive operations. Behavioral Neuroscience 106:731–38. [aWTT]CrossRefGoogle ScholarPubMed
Akshoomoff, N. A., Courchesne, E., Press, G. A. & Irague, V. (1992) Contribution of the cerebellum to neuropsychological functioning: Evidence from a case of cerebellar degenerative disorder. Neuropsychologia 30:315–28. [aWTT]CrossRefGoogle ScholarPubMed
Albus, J. S. (1971) A theory of cerebellar function. Mathematical Bioscience 10:2561. [aFC, arJCH, aJIS, CG, PFCG, EDS, FS, JDS. aWTT]CrossRefGoogle Scholar
Albus, J. S. (1975) A new approach to manipulator control: The cerebellar model articulation controller (CMAC). Transactions of the ASME: Journal of Dynamic Systems, Measurement, and Control 97:220–27. [aJCH]CrossRefGoogle Scholar
Albus, J. S. (1981) Brains, behavior and robotics. Byte Books. [aJCH]Google Scholar
Alexander, R. M. (1989) Optimization and gaits in the locomotion of vertebrates Physiological Reviews 69.11991227. [aAMS]CrossRefGoogle ScholarPubMed
Allen, G. I. & Tsukahara, N. (1974) Cerebrocerebellar communication systems. Physiological Reviews 54:9571006. [KW]CrossRefGoogle ScholarPubMed
Alley, K. A., Baker, R. & Simpson, J. I. (1975) Afferents to the vestibulocerebellum and the origin of the visual climbing fibers in the rabbit. Brain Research 98:582–89. [aJIS]Google Scholar
Andersson, G. & Armstrong, D. M. (1985) Climbing fibre input to b zone Purkinje cells during locomotor perturbation in the cat. Neuroscience Letters Supplement 22:S27. [aJIS]Google Scholar
Andersson, G. & Armstrong, D. M. (1987) Complex spikes in Purkinje cells in the lateral vermis of the cat cerebellum during locomotion. Journal of Physiology (London) 385:107–34. [aJIS]CrossRefGoogle ScholarPubMed
Andersson, G. & Oscarsson, O. (1978) Climbing fiber microzones in cerebellar vermis and their projection to different groups of cells in the lateral vestibular nucleus. Experimental Brain Research 32:565–79. [aAMS, aJIS]Google ScholarPubMed
Aniksztejn, L. & Ben-Ari, Y. (1991) Novel form of long-term potentiation produced by a K+ channel blocker in the hippocampus. Nature 349:6769. [LJB]CrossRefGoogle Scholar
Antziferova, L. I., Arshavsky, Yu. I. Orlovsky, G. N. & Pavlova, G. A. (1980) Activity of neurons of cerebellar nuclei during fictitious scratch reflex in the cat: 1. Fastigial nucleus. Brain Research 200:239–48. [aWTT]CrossRefGoogle Scholar
Appollonio, I. M., Grafman, J., Schwartz, M. S., Massaquoi, S. & Hallett, M. (1993) Memory in patients with cerebellar degeneration. Neurology 43:1536–44. [aWTT]CrossRefGoogle ScholarPubMed
Arai, A. & Lynch, G. (1992) Factors regulating the magnitude of long-term potentiation induced by theta pattern stimulation. Brain Research. 598:12. [MB]CrossRefGoogle ScholarPubMed
Arbib, M. A., Boylls, C. C. & Dev, P. (1974) Neural models of spatial perception and the control of movement. In: Kybernetik und bionik/cybernetics, ed. Oldenbourg, R.. [aJCH, MAA]Google Scholar
Arbib, M. A., Bischoff, A., Fagg, A. H. & Crafton, S. T. (1995) Synthetic PET: Analyzing large-scale properties of neural netowrks. Human Brain Mapping 2:225–33. [MAA]CrossRefGoogle Scholar
Arbib, M. A. & Caplan, D. (1979) Neurolinguistics must be computational. Behavioral and Brain Sciences 2:449–83. [MAA]CrossRefGoogle Scholar
Arbib, M. A., Schweighofer, N. & Thach, W. T. (1995) Modeling the cerebellum: From adaptation to coordination. In: Motor control and sensory-motor integration: Issues and directions, ed. Glencross, D. J. & Piek, J. P.. Elsevier. [MAA]Google Scholar
Archambault, L. (1914–15) Les connexiones corticales du noyau rouge. Nouvelle Iconographie de la Salpitriëre 27:187225. [JDS]Google Scholar
Ariano, M. A., Lewicld, J. A., Brandwein, H. J. & Murad, F. (1982) Immunohistochemical localization of guanylate cyclase within neurons of rat brain. Proceedings of the National Academy of Sciences of the USA 79:1316–20. [aDJL, aSRV]CrossRefGoogle ScholarPubMed
Armstrong, D. M. (1974) Functional significance of the inferior olive. Physiological Reviews 54:358417. [aJIS]CrossRefGoogle ScholarPubMed
Armstrong, D. M., Campbell, N. C., Edgley, S. A., Schild, R. F. & Trott, J. R. (1982) Investigations of the olivocerebellar and spino-olivary pathways. In: Cerebellum: New vistas, eds. Palay, S. L. & Chan-Palay, V.. Springer-Verlag. [aJIS]Google Scholar
Armstrong, D. M. & Edgley, S. A. (1984) Discharges of Purkinje cells in the paravermal part of the cerebellar anterior lobe during locomotion in the cat. Journal of Physiology (London) 352:403–24. [aAMS, aJIS]CrossRefGoogle ScholarPubMed
Armstrong, D. M., Edgley, S. A. & Lidierth, M. (1988) Complex spikes in Purkinje cells of the paravermal part of the anterior lobe of the cat cerebellum during locomotion. Journal of Physiology (London) 400:405–14. [aJIS]CrossRefGoogle ScholarPubMed
Armstrong, D. M. & Rawson, J. A. (1979) Activity patterns of cerebellar cortical neurons and climbing fibre afferents in the awake cat. Journal of Physiology (London) 289:425–48. [aJIS]CrossRefGoogle ScholarPubMed
Amt-Ramos, L. R., O'Brien, W. E. & Vincent, S. R. (1992) Immunohistochemical localization of argininosuccinate synthetase in the rat brain in relation to nitric oxide synthase-containing neurons. Neuroscience 51:773–89. [aSRV]CrossRefGoogle Scholar
Arshavsky, Y. I., Berkinblit, M. B., Fuxson, O. I., Gelfand, I. M. & Orlovsky, G. N. (1972a) Recordings of neurones of the dorsal spinocerebellar tract during evoked locomotion. Brain Research 43:272–75. [aWTT]CrossRefGoogle ScholarPubMed
Arshavsky, Y. I., Berkinblit, M. B., Fuxson, O. I., Gelfand, I. M. & Orlovsky, G. N. (1972b) Origin of modulation in neurones of the ventral spinocerebellar tract during locomotion. Brain Research 43:276–79. [aWTT]CrossRefGoogle ScholarPubMed
Arshavsky, Y. I., Gelfand, I. M. & Orlovsky, G. N. (1986) Cerebellum and rhythmical movements. In: Studies of Brain Function, vol 13., ed. Braitenberg, V.. Springer-Verlag. [aJCH]Google Scholar
Arshavsky, Y. I., Orlovsky, G. N., Pavlova, G. A. & Perret, C. (1980) Activity of neurons of cerebellar nuclei during fictitious scratch reflex in the cat: 2. The interpositus and lateral nuclei. Brain Research 200:249–58. [aWTT]CrossRefGoogle ScholarPubMed
Artola, A. & Singer, W. (1987) Long-term potentiation and NMDA-receptors in rat visual cortex. Nature 330:649–52. [aFC]CrossRefGoogle ScholarPubMed
Artola, A. & Singer, W. (1990) The involvement of N-methyl-D-aspartate receptors in induction and maintenance of long-term potentiation in rat visual cortex. The European Journal of Neuroscience 2:254–69. [aFC]CrossRefGoogle ScholarPubMed
Artola, A. & Singer, W. (1993) Long-term depression of excitatory synaptic transmission and its relationship to long-term potentiation. Trends in Neuroscience 16:480–87. [PC]CrossRefGoogle ScholarPubMed
Asanuma, H. (1989) The motor cortex. Raven. [SPS]Google Scholar
Asanuma, C., Thach, W. T. & Jones, E. G. (1983a) Anatomical evidence for segregated focal groupings of efference cells and their terminal ramifications in the cerebellothalamic pathway of the monkey. Brain Research Review 5:267–99. [aWTT]CrossRefGoogle Scholar
Asanuma, C., Thach, W. T. & Jones, E. G. (1983b) Distribution of cerebellar terminations and their relation to other afferent terminations in the ventral lateral thalamic region of the monkey. Brain Research Review 5:237–65. [aWTT]CrossRefGoogle Scholar
Asanuma, C., Thach, W. T. & Jones, E. G. (1983c) Brainstem and spinal projections of the deep cerebellar nuclei in the monkey, with observations on the brainstem projections of the dorsal column nuclei. Brain Research Review 5:299322. [aWTT]CrossRefGoogle Scholar
Ashe, J., Taira, M., Smymis, N., Pellizzer, G., Georgakopoulos, T., Lurito, J. T. & Georgopoulos, A. P. (1993) Motor cortical activity preceding a memorized movement trajectory with an orthogonal bend. Experimental Brain Research 95:118–30. [CG]CrossRefGoogle ScholarPubMed
Audinat, E., Gahwiler, B. H. & Knopfel, T. (1992) Excitatory synaptic potentials in neurons of the deep nuclei in olivo-cerebellar slice cultures. Neuroscience 49:903–11. [aSRV]CrossRefGoogle ScholarPubMed
Babinski, J. (1899) De l'asynergie cérébelleuse. Revue Neurologique (Paris) 7:806–16. [aAMS, aWTT]Google Scholar
Babinski, J. (1902) Sur le rôle du cervelet dans les actes volitionnels nécessitant une succession rapide de mouvements (diadococinésie). Revue Neurologique 10:1013–15. [aAMS]Google Scholar
Babinski, J. (1906) Asynergie et inertie cérébelleuses. Revue Neurologique 14:685–86. [aWTT]Google Scholar
Babinski, J. & Toumay, A. (1913) Symptômes des maladies du cervelet. Revue Neurologique (Paris) 18:306–22. [aAMS]Google Scholar
Babour, B. (1993) Synaptic current evoked in Purkinje cells by stimulating individual granule cells. Neuron 11:759–69. [KH]CrossRefGoogle Scholar
Baizer, J. S. & Glickstein, M. (1974) Role of cerebellum in prism adaptation. Journal of Physiology 23:3435. [aWTT]Google Scholar
Baker, P. F. & DiPolo, R. (1984) Axonal calcium and magnesium homeostasis. Current Topics in Memlirane Tranviari 22:195248. [aDLJ]CrossRefGoogle Scholar
Balaban, C. D., Billingsley, M. L. & Kincaid, R. L. (1989) Evidence for transsynaptic regulation of calmodulin-dependent cyclic nucleotide phosphodiesterase in cerebellar Purkinje cells. Journal of Neuroscience 9:2374–81. [aSRV]CrossRefGoogle ScholarPubMed
Balaban, C. D. & Henry, R. T. (1988) Zonal organization of olivo-nodulus projections in albino rabbits. Neuroscience Research 5:409–23. [aJIS]CrossRefGoogle ScholarPubMed
Ball, K. & Sekular, R. (1987) Direction-specific improvement in motion discrimination. Vision Research 27:953–65. [PVD]CrossRefGoogle ScholarPubMed
Bandle, E. & Guidotti, A. (1978) Studies on the cell location of cyclic 3',5'- guanosine monophosphate-dependent protein kinase in cerebellum. Brain Research 156:412–16. [aSRV]CrossRefGoogle Scholar
Bansinath, M., Arbabha, B., Turndorf, II.. & Garg, U. C. (1993) Chronic administration of a nitric oxide synthase inhibitor, Nw-nitro-L-arginine, and drug-induced increase in cerebellar cyclic GMP in vivo. Neurochemical Research 18:1063–66. [aSRV]CrossRefGoogle Scholar
Barmack, N. H., Fagerson, M. & Errico, P. (1993b) Cholinergic projection to the dorsal cap of the inferior olive of the rat, rabbit, and monkey. Journal of Comparative Neurology 328:263–81. [aJIS]CrossRefGoogle Scholar
Barmack, N. II., Fagerson, M., Fredette, B. J., Mugnaini, E. & Shojaku, II., (1993a) Activity of neurons in the beta nucleus of the inferior olive of the rabbit evoked by natural vestibular stimulation. Experimental Brain Research 94:203–15. [arJIS]CrossRefGoogle ScholarPubMed
Barmack, N. H. & Hess, D. T. (1980) Multiple-unit activity evoked in the dorsal cap of inferior olive of the rabbit by visual stimulation. Journal of Neurophysiology 43:151–64. [aJIS]CrossRefGoogle ScholarPubMed
Barmack, N. H., Mugnaini, E. & Nelson, B. J. (1989) Vestibularly-evoked activity of single neurons in the beta nucleus of die inferior olive. In: The olivocerebellar system in motor control: Experimental brain research series 17, ed. Strata, P.. Springer-Verlag. [aJIS]Google Scholar
Barmack, N. H. & Shojaku, H. (1992) Representation of a postural coordinate system in the nodulus of the rabbit cerebellum by vestibular climbing fiber signals. In: Vestibular and brain stem control of eye, head and body movements, eds. Shimazu, H. & Shinoda, Y.. Japan Scientific Societies Press. [aJIS]Google Scholar
Barnes, C. A., McNaughton, B. L., Bredt, D. S., Ferris, C. D. & Snyder, S. H. (1994). Nitric oxide synthase inhibition in vivo: Lack of effect on hippocampal synaptic enhancement or spatial memory. In: Long-term potentiation, vol. 2, ed. Baudry, M. & Davis, J. L.. MIT Press. [MB]Google Scholar
Barto, A. G. (1994) Reinforcement learning control. Current Opinion in Neurobiology 4:888–93. [rJCH]CrossRefGoogle ScholarPubMed
Barto, A. G. (1995) Adaptive critics and the basal ganglia. In: Models of Information Processing in the Basal Ganglia, ed. Houk, J. C., Davis, J. L. & Beiser, D. G.. MIT Press. [arJCH]Google Scholar
Barto, A. G., Buckingham, J. T., & Houk, J. C. (1996) A predictive switching model of cerebellar movement control. In: Advances in Neural Information Processing Systems 8, eds. Touretzky, D. S., Mozer, M. C. & Hasselmo, M. E.. MIT Press. [aJCH]Google Scholar
Bastian, A. J., Martin, T. A., Keating, J. G. & Thach, V. V. T. (in press) Cerebellar ataxia: Abnormal control of interaction torques across multiple joints. Journal of Neurophysiology. [rWTT]Google Scholar
Bastian, A. J., Mueller, M. J., Martin, T. A., Keating, J. G. & Thach, W. T. (1994) Control of interaction torques during reaching in normal and cerebellar patients. Society for Neuroscience Abstracts 20:933. [aWTT]Google Scholar
Bastian, A. J. & Thach, W. T. (1995) Cerebellar patients made initial directional errors consistent with impaired control of limb dynamics. Society of Neuroscience Abstracts 21:19211995. [rAMS]Google Scholar
Batchelor, A. M., Madge, D. J. & Garthwaite, J. (1994) Synaptic avtivation of metabotropic glutamate receptors in the parallel fibre-Purkinje cell pathway in rat cerebellar slices. Neuroscience 63:911–15. [rMKan]CrossRefGoogle Scholar
Baude, A., Nusser, Z., Roberts, J. D. B., Mulvihill, E., Mcllhinney, R. A. J. & Somogyi, P. (1993) The metabotropic glutamate receptor (mGlurla) is concentrated at perisynaptic membrane of neuronal subpopulations as detected by immunogold reaction. Neuron 11:771–87. [aDJL]CrossRefGoogle Scholar
Baudry, M. & Davis, J. L., eds. (1994) Long-term potentiation, vol. 2. MIT Press. [MB]Google Scholar
Baudry, M. & Lynch, G. (1993) Long-term potentiation: Biochemical mechanisms. In: Synaptic plasticity: Molectdar and functional aspects, ed. Baudry, M., Thompson, R. F. & Davis, J. L.. MIT Press. [MB]Google Scholar
Bear, M. F. & Malenka, R. C. (1994) Synaptic plasticity: LTP and LTD. Current Opinion Neurobiology 4:389–99. [MB]CrossRefGoogle ScholarPubMed
Becker, W. (1972) The control of eye movements in the saccadic system. Bibliography Opthalmology 82:233–43. [HB]Google ScholarPubMed
Becker, W. J., Kunesch, E. & Freund, H. J. (1990) Coordination of a multi-joint movement in normal humans and in patients with cerebellar dysfunction. Canadian Journal of Neurological Sciences 17:264–74. [aAMS, CG]CrossRefGoogle ScholarPubMed
Becker, W. J., Morrice, B. L., Clark, A. W. & Lee, R. G. (1991) Multi-joint reaching movements and eye-hand tracking in cerebellar incoordination: Investigation of a patient with complete loss of Purkinje cells. Canadian Journal of Neurological Sciences 18:476–87. [aAMS]CrossRefGoogle ScholarPubMed
Bekkering, H., Abrams, R. A. & Pratt, J. (1995) Transfer of saccadic adaptation to the manual motor system. Human Movement Science 14:155–64. [HB]CrossRefGoogle Scholar
Bekkers, J. M. & Stevens, C. F. (1989) NMDA and non-NMDA receptors are co-localized at individual excitatory synapses in cultured rat hippocampus. Nature 341:230–33. [aFC]CrossRefGoogle ScholarPubMed
Bell, C. C. (1994) The generation of expectations in cerebellum-like structures. In: The neurobiology of computation: Proceedings of the annual computational neuroscience meeting. [aJCII]CrossRefGoogle Scholar
Bell, C. C. & Grimm, R. J. (1969) Discharge properties of Purkinje cells recorded on single and double microelectrodes. Journal of Neurophysiology 32:1044–55. [aJCII, aJIS]CrossRefGoogle ScholarPubMed
Bell, C. C. & Kawasaki, T. (1972) Relations among climbing fiber responses of nearby Purkinje cells. Journal of Neurophysiology 35:155–69. [aJIS]CrossRefGoogle ScholarPubMed
Bellugi, U., Bihrle, A., Jernigan, T., Trauner, D. & Doherty, S. (1990) Neuyropsychological, neurological, and neuroanatomical profile of Williams syndrome. American Journal of Medical Genetics 6(suppl):115–25. [aWTT]Google ScholarPubMed
Ben-Ari, Y. & Aniksztejn, L. (1995) Role of glutamate metabotropic receptors in long-term potentiation in the hippocampus. Seminar in Neuroscience 7:127–35. [MB]CrossRefGoogle Scholar
Benedetti, F., Montarolo, P. G. & Rabacchi, S. (1984) Inferior olive lesion induces long-lasting functional modifications in the Purkinje cells. Experimental Brain Research 55:368–71. [aJIS]CrossRefGoogle ScholarPubMed
Bennett, D. J. (1993a) Electromyographic responses to constant position errors imposed during voluntary elbow joint movement in human. Exjierimental Brain Research 95:499508. [aAMS]Google ScholarPubMed
Bennett, D. J. (1993b) Torques generated at the human elbow joint in response to constant position errors imposed during voluntary movements. Experimental Brain Research 95:488–98. [aAMS, HG]Google ScholarPubMed
Bennett, D. J., Hollerbach, J. M., Xu, Y. & Hunter, I. W. (1992) Time-varying stiffness of human elbow joint during cyclic voluntary movement. Experimental Brain Research 88:433–42. [arAMS, HG]CrossRefGoogle ScholarPubMed
Benuck, M., Reitfi, M. E. A. & Lajtha, A. (1989) Phosphoinositide hydrolysis induced by depolarization and sodium channel activation in mouse cerebrocortical slices. Neuropharmacology 28:847–54. [aDJL]CrossRefGoogle ScholarPubMed
Beppu, H., Nagaoka, M. & Tanaka, R. (1987) Analysis of cerebellar motor disorders by visually guided elbow tracking movement: 2. Contribution of the visual cues on slow ramp pursuit. Brain 110:118. [PH]CrossRefGoogle ScholarPubMed
Berger, T. W. & Bassett, J. L. (1992) System properties of the hippocampus. In: Learning and memory: The behavioral and biological substrates, ed. Gormezano, I. & Wasserman, E. A.. Erlbaum. [CW]Google Scholar
Berger, T. V. V. & Orr, W. B. (1983) Hippocampectomy selectively disrupts discrimination reversal conditioning of the rabbit nictitating membrane response. Behavioral Brain Research 8:4968. [CW]CrossRefGoogle ScholarPubMed
Berman, A. J., Berman, D. & Prescott, J. W. (1978) The effect of cerebellar lesions on emotional behavior in the rhesus monkey. In: The Cerebellum, epilqisy and behavior, ed. Cooper, I. S., Riklan, M. & Snider, R. S.. Plenum. [aWTT, JDS]Google Scholar
Bernstein, N. A. (1967) The coordination and regulation of movements. Pergamon. [aAMS, AGF, LPL]Google Scholar
Bemston, G. G. & Torello, M. W. (1982) The paliocerebellum and the integration of behavioral function. Physiological Psychology 10:212. [aWTT]Google Scholar
Berthier, N. E. & Moore, J. W. (1986) Cerebellar Purkinje cell activity related to the classically conditioned nictitating membrane response. Experimental Brain Research 63:341–50. [aJCH]CrossRefGoogle Scholar
Berthier, N. E., Singh, S. P., Barto, A. G. & Houk, J. C. (1993) Distributed representation of limb motor programs in arrays of adjustable pattern generators. Journal of Cognitive Neuroscience 5:5678. [arJCH, PD, JCH]CrossRefGoogle ScholarPubMed
Berthoz, A. & Pozzo, T. (1988) Intermittent head stabilisation during postural and Iocomotory tasks in humans. In: Posture and gait: Development, adaptation and modulation, ed. Amblard, B., Berthoz, A. & Clarac, F.. lsevier. [SMO]Google Scholar
Biel, M., Altenhofen, W., Hullin, R., Ludwig, J., Freichel, M., Flockerzi, V., Dascal, N., Kaupp, U. B. & Hofmann, F. (1993) Primary structure and functional expression of a cyclic nucleotide-gated channel from rabbit aorta. Federation of European Biological Societies Letters 329:134–38. [aSRV]CrossRefGoogle ScholarPubMed
Biggio, G., Brodie, B. B., Costa, E. & Guidotti, A. (1977a) Mechanisms by which diazepam, muscimol and other drugs change the content of cGMP in cerebellar cortex. Proceedings of the National Academy of Sciences of the USA 74:3592–96. [aSRV]CrossRefGoogle ScholarPubMed
Biggio, G., Corda, M. G., Casu, M., Salis, M. & Gessa, G. L. (1978) Disappearance of cerebellar cyclic GMP induced by kainic acid. Brain Research 154:203–8. [arSRV]CrossRefGoogle ScholarPubMed
Biggio, G., Costa, E. & Guidotti, A. (1977b) Pharmacologically induced changes in the 3',5'-cyclic guanosine monophosphate content of rat cerebellar cortex: Differences between apomorphine, haloperidol and harmaline. Journal of Pharmacology and Experimental Therapeutics 200:207–15. [aSRV]Google Scholar
Biggio, G. & Guidotti, A. (1976) Climbing fiber activation and 3',5'-cyclic guanosine monophosphate (cGMP) content in cortex and deep nuclei of the cerebellum. Brain Research 107:365–73. [aSRV, DO]CrossRefGoogle Scholar
Bindman, L. J., Murphy, K. P. S. J & Pockett, S. (1988) Postsynaptic control of the induction of long-term changes in efficacy of transmission at neocortical synapses in slices of rat brain. Journal of Neurophysiology 60:1053–65. [aFC]CrossRefGoogle ScholarPubMed
Bizzi, E., Accomero, N., Chappie, W. & Hogan, N. (1982) Arm trajectory formation. Experimental Brain Research 46:139–43. [aAMS]CrossRefGoogle ScholarPubMed
Bizzi, E., Giszter, S. F., Loeb, E., Mussa-Ivaldi, F. A. & Saltiel, P. (1995) Modular organization of motor behavior in the frog's spinal cord. Trends Neuroscience 10:442–46. [DJ. rJCH, rAMS]CrossRefGoogle Scholar
Black, J. E., Isaacs, K. R., Anderson, B. J., Alcantara, A. A. & Greenough, W. T. (1990) Learning causes synaptogenesis, whereas motor activity causes angiogenesis, in cerebellar cortex of adult rats. Proceedings of the National Academy of Sciences of the USA 87:5568–72. [aJCH]CrossRefGoogle ScholarPubMed
Blaxton, T. A., Zeffiro, T. A., Gabrieli, J. D. E., Bookheimer, S. Y., Carrillo, M. C., Tlieodore, W. H. & Disterhoft, J. F. (submitted) Functional mapping of human learning: A PET activation study of eyeblink conditioning. [CW]Google Scholar
Bles, W., Vianney de Jong, J. M. B. & de Wit, G. (1984) Somatosensory compensation for loss of labyrinthine function. Acta Otolaryngologica 97:312–21. [aWTT]CrossRefGoogle ScholarPubMed
Bliss, T. V. P. & Collingridge, G. L. (1993) A synaptic model of memory: Long-term potentiation in the hippocampus. Nature 361:3139. [aJCH]CrossRefGoogle ScholarPubMed
Bliss, T. V. P. & Lomo, T. (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. Journal of Physiology (London) 232:331–56. [aMKan]CrossRefGoogle ScholarPubMed
Bliss, T. V. P. & Lynch, M. A. (1988) Long-term potentiation of synaptic transmission in the hippocampus: Properties and mechanisms. In: Long term potentiation, from biophysics to behavior, ed. Landfield, P. W. & Deadwyler, S. A.. Liss, Alan R.. [aFC]Google Scholar
Bloedel, J. R. (1992) Functional heterogeneity with structural homogeneity: How does the cerebellum operate? Behavioral and Brain Sciences 15:666–78. [aJCH, aAMS, aJIS, aWTT, EDS]Google Scholar
Bloedel, R. F. & Bracha, V. (1995) On the cerebellum, cutaneomuscular reflexes, movement control and the elusive engrams of memory. Behavioral Brain Besearch 68:144. [DT]Google ScholarPubMed
Bloedel, J. R. & Courville, J. (1981) Cerebellar afferent systems. In: Handbook of Plisyiology: sect. 1. The nervous system: vol. 2. Motor control, ed. Brookhart, J., Mountcastle, V., Brooks, V., & Geiger, S.. American Physiological Society. [aJCH]Google Scholar
Bloedel, J. R. & Ebner, T. J. (1984) Rhythmic discharge of climbing fibre afférents in response to natural peripheral stimuli in the cat. Journal of Physiology (London) 352:129–46. [aJIS]CrossRefGoogle ScholarPubMed
Bloedel, J. R. & Kelly, T. M. (1992) The dynamic selection hypothesis: A proposed function for the cerebellar sagittal zones. In: The cerebellum revisited, eds. Llinás, R. & Sotelo, C.. Springer-Verlag. [aJIS]Google Scholar
Bloedel, J. R. & Roberts, W. J. (1970) Action of climbing fiber in cerebellar cortex of the cat. Journal of Neurophysiology 34:1731. [aJIS, DO]CrossRefGoogle Scholar
Blomfield, S. & Marr, D. (1970) How the cerebellum may be used. Nature 227:1224–28. [aJCH]CrossRefGoogle ScholarPubMed
Bloom, F. E., Hoffer, B. J. & Siggins, G. R. (1971) Studies on norepinephrine-containing afferents to Purkinje cells of rat cerebellum: 1. Localization of the fibers and their synapses. Brain Research 25:501–21. [aDJL]CrossRefGoogle Scholar
Bortolotto, Z. A., Bashir, Z. I., Davies, C. H. & Collingridge, G. L. (1994) A molecular switch activated by metabotropic glutamate receptors regulates induction of long-term potentiation. Nature 368:740–43. [MB]CrossRefGoogle ScholarPubMed
Bossom, J. (1965) The effect of brain lesions on prism adaptation in monkeys. Psychonomic Science 4546. [aWTT]CrossRefGoogle Scholar
Bossom, J. & Hamilton, C. R. (1963) Interocular transfer of prism-altered coordinations in split-brain monkeys. Journal of Comparative Psysiology and Psychology 56:769–74. [aWTT]CrossRefGoogle ScholarPubMed
Botez, M. I., Botez, T., Elie, R. & Attig, E. (1989) Role of the cerebellum in complex human behavior. Italian Journal of Neurological Science 10:291300. [aWTT, JDS]CrossRefGoogle ScholarPubMed
Botez, M. I., Gravel, J., Attig, E. & Vezina, J. -L. (1985) Reversible chronic cerebellar ataxia after phenytoin intoxication: Possible role of cerebellum in cognitive thought. Neurology 35:1152–57. [aWTT]CrossRefGoogle ScholarPubMed
Botez, M. I., Leveille, J. & Botez, T. (1988) Role of the cerebellum in cognitive thought: SPECT and neurological findings. In: The Australian Society for the Study of Brain Impairment, ed. Matheson, M. & Newman, H.. [aWTT]Google Scholar
Boucher, J. L., Genet, A., Vadon, S., Dclaforge, M. & Mansuy, D. (1992) Formation of nitrogen oxides and citrulline upon oxidation of Nn-hydroxy-L-arginine by hemeproteins. Biochemical and Biopliysical Research Communications 184:1158–64. [DO]CrossRefGoogle ScholarPubMed
Boulter, J., Hollman, M., O'Shea-Greenfild, A., Hartley, M., Deneris, E., Maron, C. & Heinemann, S. (1990) Molecular cloning and functional expression of glutamate receptor subunit genes. Science 249:1033–37. [aFC, aSRV]CrossRefGoogle ScholarPubMed
Boulton, C. L., Southam, E. & Garthwaite, J. (1995) Nitric oxide-dependent long-term potentiation is blocked by a specific inhibitor of soluble guanyl cyclase. Neuroscience 69:699703. [LJB]CrossRefGoogle Scholar
Boussaoud, D. (1995) Primate premotor cortex: Modulation of preparatory neuronal activity by gaze angle. Journal of Neurophysiology 73:886–90. [PVD]CrossRefGoogle ScholarPubMed
Bower, J. M. (1992) Is the cerebellum a motor control device? Commentary on “Function heterogeneity with structural homogeneity: How does the cerebellum operate?” by Bloedel, J. R.. Behavioral and Brain Sciences 15:714–15. [JMB]Google Scholar
Bower, J. M. (1995a) The cerebellum as a sensory acquisition controller. Human Brain Mapping 2:255–56. [JMB]CrossRefGoogle Scholar
Bower, J. M. (1995b) Is the cerebellum sensory for motor's sake, or motor for sensory's sake? The cerebellum: From structure to control. Satellite Symposium of the Meeting of European Neuroscience [Abstracts: p 32], Rotterdam, August 31-September 3. [DT]Google Scholar
Bower, J. M. (in press) Is the cerebellum sensory for motor's sake, or motor for sensory's sake? Progress in Brain Research. [JMB]Google Scholar
Bower, J. M. & Kassel, J. (1990) Variability in tactile projection patterns to cerebellar folia Crus IIA in the Norway rat. Journal of Comparative Neurology 302:768–78. [JMB, RCM]CrossRefGoogle ScholarPubMed
Bower, J. M. & Woolston, D. C. (1983) Congruence of spatial organization of tactile projections to granule cell and Purkinje cell layers of cerebellar hemispheres of the albino rat: Vertical organization of cerebellar cortex. Journal of Neurophysiology 49:745–66. [JMB, DJ, FS, rAMS]CrossRefGoogle ScholarPubMed
Boylls, C. C. (1975a) A theory of cerebellar function with applications to locomotion, COINS Technical Report 76–1, Amherst, MA. [aJCH, MGP]Google Scholar
Boylls, C. C. (1975b) Synergies and cerebellar function. In: Conceptual models of neural organization. MIT Press. [MAA]Google Scholar
Boylls, C. C. (1980) Contributions to locomotor coordination of an olivo-cerebellar projection to vermis in the cat: Experimental results and theoretical proposals. In: The inferior olivary nucleus: Anatomy and physiology, eds. Courville, J., de Montigny, C. & Lamarre, Y.. Raven. [aJIS]Google Scholar
Braitenberg, A. & Atwood, R. P. (1958) Morphological observations on the cerebellar cortex. Journal of Corparative Neurology 109:127. [aJCH, aWTT. FS]CrossRefGoogle ScholarPubMed
Braitenberg, V. (1961) Functional interpretation of cerebellar histology. Nature 190:539–40. [FS]CrossRefGoogle Scholar
Braitenberg, V. (1983) The cerebellum revisited. Journal of Theoretical Neurobiology 2:237–41.Google Scholar
Brand, S., Dahl, A.-L. & Mugnaini, E. (1976) The length of parallel fibers in the cat cerebellar cortex. An experimental light and electron microscope study. Experimental Brain Research 26:3958. [aWTT]CrossRefGoogle Scholar
Bracke-Tolkmitt, R., Linden, A., Canavan, G. M., Rockstroh, B., Scholz, E., Wessel, K. & Diener, H. C. (1989) The cerebellum contributes to mental skills. Behavioral Neuroscience 103:442–46. [aWTT]CrossRefGoogle Scholar
Bredt, D. S., Glatt, C. E., Hwang, P. M., Fotuhi, M., Dawson, T. M. & Snyder, S. H. (1991) Nitric oxide synthase protein and mRNA are discretely localized in neuronal populations of the mammalian CNS together with NADPH diaphorase. Neuron 7:615–24. [aSRV]CrossRefGoogle ScholarPubMed
Bredt, D. S., Hwang, P. M. & Snyder, S. H. (1990) Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature 347:768–70. [aFC, aDJL, aSRV]CrossRefGoogle ScholarPubMed
Bredt, D. S. & Snyder, S. H. (1989) Nitric oxide mediates glutamate-Iinked enhancement of cGMP levels in the cerebellum. Proceedings of the National Academy of Sciences of the USA 86:9030–33. [aSRV]CrossRefGoogle ScholarPubMed
Bredt, D. S. & Snyder, S. H. (1990) Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proceedings of the National Academy of Sciences of the U.S.A. 87:682–85. [aSRV]CrossRefGoogle ScholarPubMed
Breese, G. R., Mailman, R. B., Ondrusek, M. G., Harden, T. K. & Mueller, R. A. (1978) Effects of dopaminergic agonists and antagonists on cerebellar guanosine-3, 5-monophosphate (cGMP). Life Sciences 23:533–36. [aSRV]CrossRefGoogle ScholarPubMed
Bridgeman, B., Hendry, D. & Stark, L. (1975) Failure to detect displacement of the visual world during saccadic eye movements. Vision Research 15:719–22. [HB]CrossRefGoogle ScholarPubMed
Briley, P. A., Kouyoumdjian, J. C., Haidamous, M. & Gonnard, P. (1979) Effect of L-glutamate and kainate on rat cerebellar cGMP levels in vivo. European Journal of Pharmacology 54:181–84. [aSRV]CrossRefGoogle ScholarPubMed
Brindley, G. S. (1964) The use made by the cerebellum of the information that it receives from the sense organs. International Brain Research Organization Bulletin 3:80. [aWTT, PFCG]Google Scholar
Brodal, P. et al. (1988) GABA-containing neurons in the pontine nuclei of rat, cat and monkey. An immunocytochemical study. Neuroscience 25:2745. [FS]CrossRefGoogle Scholar
Brooks, V. B. & Thach, W. T. (1981) Cerebellar control of posture and movement. In: Handbook of Physiology, sect. 1, vol. 2, pt. 2, ed. Brookhart, J. M., Mountcastle, V. B. & Brooks, V. B.. American Physiological Society. [KW]Google Scholar
Brooks, V. B., Kozlovskaya, I. B., Atkin, A., Horvath, F. E. & Uno, M. (1973) Effects of cooling dentate nucleus on tracking-task performance in monkeys. Journal of Neurophysiology 36:974–95. [aAMS]CrossRefGoogle ScholarPubMed
Brüne, B. & Lapetina, E. G. (1989) Activation of a cytosolic ADP-ribosyltransferase by nitric oxide-generating agents. Jottmal of Biological Chemistry 264:8455–58. [aSRV]CrossRefGoogle ScholarPubMed
Brüning, G. (1993b) NADPH-diaphorase histocliemistiy in the postnatal mouse cerebellum suggests specific developmental functions for nitric oxide. Journal of Neuroscience Research 36:580–87. [arSRV]CrossRefGoogle ScholarPubMed
Buckingham, J. T., Houk, J. C. & Barto, J. G. (1994) Controlling a nonlinear spring-mass system with a cerebellar model. In: Proceedings of the eighth Yale workshop on adaptive and learning systems. [aJCH]Google Scholar
Buckingham, J. T., Houk, J. C. & Barto, J. G. (1995) Adaptive predictive control with a cerebellar model. Proceedings of the 1995 World Congress on Neural Networks, Erlbaum. [aJCH]Google Scholar
Bunn, S. J., Garthwaite, J. & Wilkin, G. P. (1986) Guanylate cyclase activites in enriched preparations of neurones, astroglia and a synaptic complex isolated from rat cerebellum. Neurochemistry International 8:179–85. [arSRV]CrossRefGoogle Scholar
Buonomano, D. V. & Mauk, M. D. (1994) Neural network model of the cerebellum: temporal discrimination and the timing of motor responses. Neural Computation 6:3855. [aJCH]CrossRefGoogle Scholar
Burkard, W. P., Pieri, L. & Haefely, W. (1976) In vivo changes of guanosine 3, 5 cyclic phosphate in rat cerebellum by dopaminergic mechanisms. Journal of Neurochemistry 27:297–98. [aSRV]CrossRefGoogle Scholar
Burnod, Y. & Dufossé, M. (1991) A model for the cooperation between cerebral cortex and cerebellar cortex in movement learning. In: Brain and space, ed. Paillard, J.. Oxford University Press. [MD]Google Scholar
Caddy, K. W. T. & Biscoe, T. J. (1979) Structural and quantitative studies on the normal C3H and Lurcher mutant mouse. Philosophical Transactions of the Royal Society of London: Biology 287:167200. [aAMS]Google ScholarPubMed
Calabresi, P., Pisani, A., Mercuri, N. B. & Bernardi, G. (1994) Post-receptor mechanisms underlying striatal long-term depression. Journal of Neuroscience 14:4871–81. [PC]CrossRefGoogle ScholarPubMed
Callaway, J. C., Lasser-Ross, N. & Ross, W. N. (1995) IPSPs strongly inhibit climbing fiber-activated [Ca2*], increases in the dendrites of cerebellar Purkinje neurons. Journal of Neuroscience 15:2777–87. [aJIS, rSRV, JCF]CrossRefGoogle ScholarPubMed
Campbell, N. C., Ekerot, C. F. & Hesslow, G. (1983) Interaction between responses in Purkinje cells evoked by climbing fibre impulses and parallel fibre volleys in the cat. Journal of Physiology (London) 340:225–38. [aJIS]CrossRefGoogle ScholarPubMed
Cannon, S. C. & Robinson, D. A. (1987) Loss of the neural integrator of the oculomotor system from brainstem lesions in monkey. Journal of Neurophysiology 57:13831409. [aJCH]CrossRefGoogle ScholarPubMed
Carl, J. R. & Gellman, R. S. (1986) Adaptive responses in human smooth pursuit. In: Adaptive processes in the visual and oculomotor systems, ed. Keller, E. L. & Zee, D. S.. Pergamon. [PVD]Google Scholar
Carpenter, R. H. S. (1988) Movements of the eyes. Pion. [HB]Google Scholar
Carter, C. J., Noel, F. & Scatton, B. (1988) Ionic mechanisms implicated in the stimulation of cerebellar cyclic GMP levels by N-mcthyl-D-aspartate. Journal of Nerochemistry 49:195200. [aSRV]CrossRefGoogle Scholar
Carter, T. L. & McElligott, J. G. (1994) Metabotropic glutamate receptor antagonist (L-AP3) inhibits vestibulo-ocular reflex adaptation when administered into goldfish vestibulo-cercbellum. Society for Neuroscience Abstracts 20:17.10. [aJCH]Google Scholar
Cavada, C. & Goldman-Rakic, P. S. (1993) Multiple visual areas in the posterior parietal cortex of primates. Progress in Brain Research 95:123–37. [PVD]CrossRefGoogle ScholarPubMed
Chamberlain, T. J., Halick, P. & Gerrard, R. W. (1963) Fixation of experience in the rat spinal cord. Journal of Neurophysiology 26:662–73. [LPL]CrossRefGoogle ScholarPubMed
Chan-Palay, V. & Palay, S. L. (1979) Immunocytochemical localization of cyclic GMP: Light and electron microscopic evidence for involvement of neuroglia. Proceedings of the National Academy of Sciences of the USA 76:1485–88. [aSRV]CrossRefGoogle ScholarPubMed
Chapeau-Blondeau, F. & Chauvet, G. (1991) A neural network model of the cerebellar cortex performing dynamic associations. Biological Cybernetics 65:267–79. [aJCH]CrossRefGoogle ScholarPubMed
Chen, C. & Thompson, R. F. (1992) Associative long-term depression revealed by field potential recording in rat cerebellar slice. Society for Neuroscience Abstracts 18:1215. [aJCH, aDJL]Google Scholar
Chen, C. & Thompson, R. F. (1995) Temporal specificity of long-term depression in parallel fiber - Purkinje synapses in rat cerebellar slice. Learning & Memory 2:185–98. [JCH, rJCH, rDJL, rJIS]CrossRefGoogle ScholarPubMed
Chen, L. & Huang, L.-Y. M. (1992) Protein kinase C reduces Mg2* block of NMDA-receptor channels as a mechanism of modulation. Nature 356:521–23. [aDJL]CrossRefGoogle ScholarPubMed
Chen, C., Kano, M., Chen, L., Bao, S., Kim, J. J., Hashimoto, K., Thompson, R. F. & Tonegawa, S. (1995) Impaired motor coordination correlates with persistent multiple climbing fiber innervation in PKCg mutant mice. Cell 83:1233–42. [rMKan, rDJK]CrossRefGoogle Scholar
Chen, S. & Aston-Jones, G. (1994) Cerebellar injury induces NADPH diaphorase in Purkinje and inferior olivary neurons in the rat. Experimental Neurobiology 126:270–76. [rSRV]CrossRefGoogle ScholarPubMed
Chen, Q. X., stelzer, A., Kay, A. R. & Wong, R. S. K. (1990) GABAA receptor function is regulated by phosphorylation in acutely dissociated guinea-pig hippocampal neurons. Journal of Physiology (London) 420:207–21. [aMKan]CrossRefGoogle Scholar
Cheng, H. C., Kemp, B. E., Pearson, R. B., Smith, A. J., Misconi, L., Van Patten, S. M. & Walsh, D. A. (1986) A potent synthetic peptide inhibitor of the cAMP-dependent protein kinase. Journal of Biological Chemistry 261:989–92. [aMKan]CrossRefGoogle ScholarPubMed
Chubb, M. C., Fuchs, A. F. & Scudder, C. A. (1984) Neuron activity in monkey vestibular nuclei during vertical stimulation and eye movements. Journal of Neurophysiology 52:724–42. [aJIS]CrossRefGoogle ScholarPubMed
Cintas, H. M., Rutherford, J. G. & Gwyn, D. G. (1980) Some midbrain and diencepbalic projections to the inferior olive in the rat. In: The inferior olivary nucleus: Anatomy and physiology, ed. Courville, J., de Montigny, C. & Lamarre, Y.. Raven. [JDS]Google Scholar
Clark, G. A., McCormick, D. A., Lavond, D. G. & Thompson, R. F. (1984) Effects of lesions of cerebellar nuclei on conditioned behavioral and hippocampal neuronal responses. Brain Research 291:125–36. [CW]CrossRefGoogle ScholarPubMed
Clément, G. & Rézette, D. (1985) Motor behavior underlying the control of an upside-down vertical posture. Experimental Brain Research 59:478–84. [aAMS]CrossRefGoogle ScholarPubMed
Cohen, H., Cohen, B., Raphan, T. & Waespe, W. (1992) Habitation and adaptation of the vestibuloocular reflex: A model of differential control by the vestibulocerebellum. Experimental Brain Researcli 90:526–38. [aJIS]Google Scholar
Colin, F., Manil, J. & Desclin, J. C. (1980) The olivocerebellar system. Delayed and slow inhibitory effects: An overlooked salient feature of the cerebellar climbing fibers. Brain Research 187:327. [aJIS]CrossRefGoogle ScholarPubMed
Collingridge, G. L., Kelh, S. J. & McLennan, H. (1983) Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. Journal of Physiology 334:3346. [aFC]CrossRefGoogle ScholarPubMed
Conquet, F., Bashir, Z. I., Davies, C. H., Daniel, H., Ferraguti, F., Bordi, F., Franz-Bacon, K., Reggian, A., Matarerse, V., Conde, F., Collingridge, G. L. & Crépel, F. (1994) Motor deficit and impairment of synaptic plasticity in mice lacking mGluRl. Nature 372:237–42. [aJCH, arMKan, TH, MKan, rDJK, rSRV]CrossRefGoogle Scholar
Conrad, B. & Brooks, V. B. (1974) Effects of dentate cooling on rapid alternating arm movements. Journal of Neurophysiology 37:792804. [aAMS]CrossRefGoogle ScholarPubMed
Cordo, P. J. & Nashner, L. M. (1982) Properties of postural adjustments associated with rapid arm movements. Journal of Neurophysiology 47:287302. [aAMS]CrossRefGoogle ScholarPubMed
Coulter, D. A., LoTurco, J. J., Kubota, M., Disterhoft, J. F., Moore, J. W. & Alkon, D. L. (1989) Classical conditioning reduces the amplitude and duration of the calcium-dependent afterhyperpolarization in rabbit hippocampal pyramidal cells. Journal of Neurophysiology 61:971–81. [CW]CrossRefGoogle ScholarPubMed
Crépel, F. & Audinat, E. (1991) Excitatory amino acid receptors of cerebellar Purkinje cells: Development and plasticity. Progress in Biophysic and Molecular Biology 55:3146. [aFC]CrossRefGoogle ScholarPubMed
Crépel, F., Audinat, E., Daniel, H., Hemart, N., Jaillard, D., Rossier, J. & Lambolez, B. (1994) Cellular locus of the nitric oxide-synthase involved in cerebellar long-term depression induced by high external potassium concentration. Neuropharmacology 33:13991405. [DO, rFC, rSRV]CrossRefGoogle ScholarPubMed
Crépel, F., Daniel, H., Conde, F., Ferraguit, F. & Conquet, F. (1995) Pre- and postsynaptic mechanisms of cerebellar LTD. Fourth IBRO World Congress of Neuroscience [abstract] 13.2. [rDJL]Google Scholar
Crépel, F., Daniel, H., Hemart, N. & Jaillard, D. (1991) Effects of ACPD and AP3 on parallel fibre-mediated EPSPs of Purkinje cells in cerebellar slices in vitro. Experimental Brain Research 86:402–6. [aFC, aDJL]CrossRefGoogle ScholarPubMed
Crépel, F., Daniel, H., Hemart, N. & Jaillard, D. (1993) Mechanisms of synaptic plasticity in the cerebellum. In: Long-term potentiation: A debate of current issties, vol. 2., ed. Baudry, M. & Davis, J., MIT Press. [aDJL]Google Scholar
Crépel, F., Dhanjal, S. S. & Sears, T. A. (1982) Effect of glutamate, aspartate and related derivatives on cerebellar Purkinje cell dendrites in the rat: An in vitro study. Journal of Physiology 329:297317. [aFC]CrossRefGoogle ScholarPubMed
Crépel, F. & Jaillard, D. (1990) Protein Idnases, nitric oxide and long-term depression of synapses in the cerebellum. NeuwReport 1:133–36. [aFC, arMKan, aDJL, aSRV, NAH. DO. PC]CrossRefGoogle ScholarPubMed
Crépel, F. & Jaillard, D. (1991) Pairing of pre- and postsynaptic activities in cerebellar Purkinje cells induces long-term changes in synaptic efficacy in vitro. Journal of Physiology (London) 432:123–41. [aFC. aDJL. PC]CrossRefGoogle ScholarPubMed
Crépel, F. & Jaillard, D. (1988) Activation of protein kinase C induces a long-term depression of glutamate sensitivity of cerebellar Purkinje cells. An in vitro study. Brain Research 458:397401. [aFC, aMKan, aDJL]CrossRefGoogle ScholarPubMed
Crépel, F. & Jaillard, D. (1990) Modulation of the responsiveness of cerebellar Purkinje cells to excitatory amino acids. In: Excitatory amino acids and neuronal plasticity, ed. Ben-Ari, Y.. Plenum. [aFC]Google Scholar
Crick, F. H. C. & Koch, C. (1995) Are we aware of visual activity in the primary visual cortex? Nature 375:121–23. [SMO]CrossRefGoogle Scholar
Crill, W. E. (1970) Unitary multiple-spiked responses in the cat inferior olive nucleus. Journal of Neurophysiology 33:199209. [aJIS]CrossRefGoogle ScholarPubMed
Cross, A. J., Misra, A., Sandilands, A., Taylor, M. J. & Green, A. R. (1993) Effect of chlormethiazole, dizocilpine and pentobarbital on harmaline-induced increase of cerebellar cyclic GMP and tremor. Psychopharmacology 111:9698. [aSRV]CrossRefGoogle ScholarPubMed
Cuenod, M., Do, K. Q., Vollenweider, F., Zollinger, M., Klein, A. & Streit, P. (1989) The puzzle of the transmitters in the climbing fibers. In: The olivocercbellar system in motor control [Brain Research Series 17], ed. Strata, P.. Springer-Verlag. [aFC, aDJL]Google Scholar
Daniel, H., Hemart, N., Jaillard, D. & Crépel, F. (1992) Coactivation of metabotropic glutamate receptors and of voltage-gated calcium channels induces long-term depression in cerebellar Purkinje cells in vitro. Experimental Brain Research 90:327–31. [aFC, aMKan, aDJL, DO, rSRV]CrossRefGoogle ScholarPubMed
Daniel, H., Hemart, N., Jaillard, D. & Crépel, F. (1993) Long-term depression requires nitric oxide and guanosine 3,-5 cyclic monophosphate production in cerebellar Purkinje cells. European Journal of Neuroscience 5:1079–82. [aFC, aDJL, aSRV, PC. LJB, NAH]CrossRefGoogle Scholar
Danysz, W., Wroblewski, J. T., Brooker, G. & Costa, E. (1989) Modulation of glutamate receptors by phencyclidine and glycine in the rat cerebellum: cGMP increase in vivo. Brain Research 479:270–76. [aSRV]CrossRefGoogle ScholarPubMed
Dawson, V. L., Dawson, T. M., London, E. D., Bredt, D. S. & Snyder, S. H. (1991) Nitric oxide mediates glutamate neurotoxiciry in primary cortical cultures. Proceedings of the National Academy of Sciences of the USA 88:6368–71. [aSRV]CrossRefGoogle Scholar
De Camilli, P., Miller, P. E., Levitt, P., Walter, U. & Greengard, P. (1984) Anatomy of cerebellar Purkinje cells in the rat determined by a specific immunohistochcmical marker. Neuroscience 11:761817. [aDJL, aSRV]CrossRefGoogle Scholar
De Schutter, E. (1995) Cerebellar long-term depression might normalize excitation of Purkinje cells: A hypothesis. Trends in Neurosciences 18:291–95. [EDS]CrossRefGoogle ScholarPubMed
De Schutter, E. & Bower, J. M. (1994a) An active membrane model of the cerebellar Purkinje cell: 1. Simulation of current clamps in slice. Journal of Neurophysiology 71:375400. [JMB, KH, EDS]CrossRefGoogle ScholarPubMed
De Schutter, E. & Bower, J. M. (1994b) An active membrane model of the cerebellar Purkinje cell: 2. Simulation of synaptic response. Journal of Neurophysiology 71:401–19. [JMB, KH]CrossRefGoogle Scholar
De Schutter, E. & Bower, J. M. (1994c) Simulated responses of cerebellar Purldnje cell are independent of the dendritic location of granule cell synaptic inputs. Proceedings of the National Academy of Sciences of the USA 91:4736–40. [JMB, KH, EDS]CrossRefGoogle ScholarPubMed
de Graaf, J. B., Pelisson, D., Prablanc, C. & Goffart, L. (1955) Modifications in end positions of arm movements following short term saccadic adaptation. NeuroReport 6:1733–36. [HB]CrossRefGoogle Scholar
de Montigny, C. & Lamarre, Y. (1973) Rhythmic activity induced by harmaline in the olivo-cerebello-bulbar system of the cat. Brain Research 53:8195. [aJIS]CrossRefGoogle ScholarPubMed
de Vente, J., Bol, J. G. J. M., Berkelmans, H. S., Schipper, J. & Steinbusch, H. M. W. (1990) Immunocytochemistry of cGMP in the cerebellum of the immature, adult, and aged rat: The involvement of nitric oxide. A micropharmacological study. European Journal of Neuroscience 2:845–62. [aDJL, aSRV]CrossRefGoogle ScholarPubMed
de Vente, J., Bol, J. G. J. M. & Steinbusch, H. W. M. (1989a) cCMP-producing, atrial natriuretic factor-responding cells in the rat brain. European Journal of Neuroscience 1:436–60. [DO]CrossRefGoogle ScholarPubMed
de Vente, J., Bol, J. G. J. M. & Steinbusch, H. W. M. (1989b) Localization of cGMP in the cerebellum of the adult rat: An immunohistochemical study. Brain Research 504:332–37. [aSRV]CrossRefGoogle ScholarPubMed
de Vente, J. & Steinbusch, H. W. M. (1992) On the stimulation of soluble and particulate guanylate cyclase in the rat brain and the involvement of nitric oxide as studied by cGMP immunocytochemistry. Acta Histochemica 92:1338. [aDJL, aSRV]CrossRefGoogle ScholarPubMed
De Zeeuw, C. I. (1990) Ultrastructure of the cat inferior olive. Ph.D. thesis, Erasmus University, Rotterdam. [aJIS]Google Scholar
De Zeeuw, C. I., Gerrits, N. M., Voogd, J., Leonard, C. S. & Simpson, J. I. (1994) The rostral dorsal cap and ventrolateral outgrowth of the rabbit inferior olive receive a GABAergic input from dorsal group y and the ventral dentate nucleus. Journal of Comparative Neurology 341:420–32. [arJIS]CrossRefGoogle ScholarPubMed
De Zeeuw, C. I., Hertzberg, E. & Mugnaini, E. (1995a) The dendritic lamellar body: A new neuronal organelle putatively associated with dendrodendritic gap junctions. Journal of Neuroscience 15(2):15871604. [aJIS]CrossRefGoogle ScholarPubMed
De Zeeuw, C. I., Holstege, J. C., Ruigrok, T. J. H. & Voogd, J. (1989) Ultrastructural study of the GABAergic, the cerebellar, and the mesodiencephalic innervation of the cat medial accessory olive: Anterograde tracing combined with immunocytochemistry. Journal of Comparative Neurology 284:1235. [aJIS]CrossRefGoogle ScholarPubMed
De Zeeuw, C. I., Holstege, J. C., Ruigrok, T. J. H. & Voogd, J. (1990) Mesodiencephalic and cerebellar terminals end up on the same dendritic spines within the glomeruli of the cat and rat inferior olive: An ultrastructural study using a combination of (3H)Ieucine and WGA-HRP anterograde tracing. Neuroscience 34:645–55. [aJIS, CW]CrossRefGoogle Scholar
De Zeeuw, C. I. & Ruigrok, T. J. H. (1994) Olivary neurons in the nucleus of Darkschewitsch in the cat receive excitatory monosynaptic input from the cerebellar nuclei. Brain Research 653:345–50. [aJIS]CrossRefGoogle ScholarPubMed
De Zeeuw, C. I., Ruigrok, T. J. H., Holstege, J. C., Jansen, H. J. & Voogd, J. (1990) Intracellular labeling of neurons in the medial accessory olive of the cat: 2. Ultrastructure of dendritic spines and their GABAergic innervation. Journal of Comparative Neurology 300:478–94.CrossRefGoogle Scholar
De Zeeuw, C. I., Ruigrok, T. J. H., Holstege, J. C., Schalekamp, M. P. A. & Voogd, J. (1990) Intracellular labeling of neurons in the medial accessory olive of the cat: 3, Ultrastructure of the axon hillock and initial segment and their GABAergic innervation. Journal of Comparative Neurology 300:495510. [aJIS]CrossRefGoogle Scholar
De Zeeuw, C. I., Wentzel, P. & Mugnaini, E. (1993) Fine structure of the dorsal cap of the inferior olive and its GABAergic and non-GABAergic input from the nucleus prepositus hypoglossi in rat and rabbit. Journal of Comparative Neurology 327:6382. [arJIS]CrossRefGoogle Scholar
De Zeeuw, C. I., Wylie, D. R., DiGiorgi, P. L. & Simpson, J. I. (1994b) Projections of individual Purkinje cells of identified zones in the flocculus to the vestiublar and cerebellar nuclei in the rabbit. Journal of Comparative Neurology 349:428–47. [aJIS]CrossRefGoogle Scholar
De Zeeuw, C. I., Wylie, D. R., Stahl, J. S. & Simpson, J. I. (1995b) Phase relations of Purkinje cells in the rabbit flocculus during compensatory eye movements. Journal of Neurophysiology 74:2051–64. [aJIS]CrossRefGoogle ScholarPubMed
Deadwyler, S. A. & Hampson, R. E. (1995) Ensemble activity and behavior: What's the code? Science 270.1316–18. [CW]CrossRefGoogle ScholarPubMed
Dean, P. (1995) Modelling the role of the cerebellar fastigial nuclei in producing accurate saccades: The importance of burst timing. Neuroscience 68:1059–77. [PD]CrossRefGoogle ScholarPubMed
Dean, P., Mayhew, J. E. W. & Langdon, P. (1994) Learning and maintaining saccadic accuracy: A model of brainstem-cerebellar interactions. Journal of Cognitive Neuroscience 6:117–38. [aJCH, MAA, HB, PD]CrossRefGoogle Scholar
Decety, J. & Michel, F. (1989) Comparative analysis of actual and mental movement times in two graphic tasks. Brain and Cognition 11:8797. [aWTT]CrossRefGoogle ScholarPubMed
Decety, J., Sjoholm, H., Ryding, E., Stenberg, G. & Ingvar, D. H. (1990) The cerebellum participates in mental activity: Tomographie measurements of regional cerebral blood flow. Brain Research 535:313–17. [aWTT]CrossRefGoogle ScholarPubMed
Deecke, L., Grözinger, B. & Korhuber, H. H. (1976) Voluntary finger movement in man: Cerebral potentials and theory. Biological Cybernetics 23:99119. [KW]CrossRefGoogle ScholarPubMed
Demer, J. L., Echelman, D. A. & Robinson, D. A. (1985) Effects of electrical stimulation and reversible lesions of the olivocerebellar pathway on Purkinje cell activity in the flocculus of the cat. Brain Research 346:2231. [aJIS]CrossRefGoogle ScholarPubMed
Denk, W., Sugimori, M. & Llinas, R. (1995) Two types of calcium response limited to single spines in cerebellar Purkinje cells. Proceedings of the National Academy of Sciences of the USA 92:8279–82. [rDJL]CrossRefGoogle ScholarPubMed
Desclin, J. C. (1974) Histological evidence supporting the inferior olive as the major source of cerebellar climbing fibers in the rat. Brain Research 77:365–84. [aJIS]CrossRefGoogle ScholarPubMed
DeSerres, S. J. & Milner, T. E. (1991) Wrist muscle activation patterns and stiffness associated with stable and unstable mechanical loads. Experimental Brain Research 86:451–58. [aAMS]CrossRefGoogle Scholar
Desmond, J. E. & Moore, J. W. (1991) Single-unit activity in red nucleus during the classically conditioned rabbit nictitating membrane response. Neuroscience Research 10:260–79. [aJCH]CrossRefGoogle ScholarPubMed
Detre, J. A., Maim, A. C., Aswad, D. W. & Greengard, P. (1984) Localization in mammalian brain of G-substrate, a specific substrate for guanosine 3, 5-cyclic monophosphate-dependent protein kinase. Journal of Neuroscience 4:2843–49. [aSRV]CrossRefGoogle Scholar
Deubel, H., Wolf, W. & Hauske, G. (1986) Adaptive gain control of saccadic eye movements. Human Neurobiology 5:245–53. [HB]Google ScholarPubMed
Deuschl, G., Toro, C., Zeffiro, T., Massaquoi, S. & Hallett, M. (in press) Adaptation motor learning of arm movements in patients with cerebellar disease. Journal of Neurology, Neurosurgery, and Psychiatry. [MH]Google Scholar
Di Pellegrino, G., Fadiag, L., Fogassi, L., Gallese, V. & Rizzolatti, G. (1992) Understanding motor events: A neurophysiological study. Experimental Brain Research 91:176–80. [aWTT]CrossRefGoogle ScholarPubMed
Dickie, B. G. M., Lewis, M. J. & Davies, J. A. (1990) Potassium-stimulated release of nitric oxide from cerebellar slices. British Journal of Pharmacology 101:89. [aSRV]CrossRefGoogle ScholarPubMed
Dickie, B. G. M., Lewis, M. J. & Davies, J. A. (1992) NMDA-induced release of nitric oxide potentiates aspartate overflow from cerebellar slices. Neuroscience Letters 138:145–48. [aSRV]CrossRefGoogle ScholarPubMed
Diener, H.-C., & Dichgans, J. (1992) Pathophysiology of cerebellar ataxia. Movement Disorders 7:95109. [JH]CrossRefGoogle ScholarPubMed
Diener, H. C., Dichgans, J., Guschlbauer, B., Bacher, M., Rapp, H. & Langenbach, P. (1990) Associated postural adjustments with body movements in normal subjects and patients with Parkinsonism and cerebellar disease. Revue Neurologique (Paris) 146:555–63. [aAMS]Google ScholarPubMed
Diener, H. C., Hore, J., Ivry, R. B. & Dichgans, J. (1993) Cerebellar dysfunction of movement and perception. Canadian Journal of Neurological Sciences 20(suppl. 3):S62–S69. [aAMS, CG]CrossRefGoogle ScholarPubMed
Dietrichs, E. (1984) Cerebellar autonomie function: Direct hypothalamo-cerebellar pathway. Science 223:591–93. [JDS]CrossRefGoogle Scholar
Dinnendahl, V. & Stock, K. (1975) Effects of arecoline and cholinesterase-inhibitors on cyclic guanosine 3, 5-monophosphate in mouse brain. Naunyn-Schmiedebergs Archives of Pharmacology 290:297306. [aSRV]CrossRefGoogle ScholarPubMed
Disterhoft, J. F., Coulter, D. A. & Alkon, D. L. (1986) Conditioning-specific membrane changes of rabbit hippocampal neurons measured in vitro. Proceedings of the National Academy of Sciences of the USA 83:2733–37. [CW]CrossRefGoogle ScholarPubMed
Disterhoft, J. F., Kronforst, M. A., Moyer, J. R. Jr., Thompson, L. T., Van der Zee, E. & Weiss, C. (1995) Hippocampal neuron changes during trace eyeblink conditioning in the rabbit. In: Acquisition of motor behavior in vertebrates, ed. Bloedel, J. R., Ebner, T. J. & Wise, S. P.. MIT Press. [CW]Google Scholar
Disterhoft, J. F., Kwan, H. H. & Lo, W. D. (1977) Nictitating membrane conditioning to tone in the immobilized albino rabbit. Brain Research 137:127–43. [CW]CrossRefGoogle ScholarPubMed
Dodson, R. A. & Johnson, W. E. (1979) Effects of ethanol, arecoline, atropine and nicotine, alone and in various combinations, on rat cerebellar cyclic guanosine 3, 5-monophosphate. Neuropharmacology 18:871–76. [aSRV]CrossRefGoogle ScholarPubMed
Dodson, R. A. & Johnson, W. E. (1980) Effects of general central nervous system depressants with and without calcium ionophore A23187 on rat cerebellar cyclic guanosine 3, 5-monophosphate. Research Communications in Chemical Pathology and Pharmacology 29:265–80. [aSRV]Google ScholarPubMed
Dolphin, A. C., Detre, J. A., Schlichter, D. J., Nairn, A. C., Yeh, H. H., Woodward, D. J. & Greengard, P. (1983) Cyclic nucleotide-dependent protein kinases and some major substrates in the rat cerebellum after neonatal X-irradiation. Journal of Neurochemistry 40:577–81. [aSRV]CrossRefGoogle ScholarPubMed
Dom, R., King, J. S. & Martin, G. F. (1973) Evidence for two direct cerebello-olivary connections. Brain Research 57:498501. [aJIS]CrossRefGoogle ScholarPubMed
Dornay, M., Uno, Y., Kawato, M. & Suzuki, R. (in press) Minimum muscle tension change trajectories. Journal of Motor Behavior. [MD]Google Scholar
Dow, R. S. (1942) The evolution and anatomy of the cerebellum. Biological Reviews 17:179220. [aJIS]CrossRefGoogle Scholar
Dow, R. s. & Moruzzi, G. (1958) The physiology and pathology of the cerebellum. University of Minnesota Press. [JDS]Google Scholar
Drevets, W. C., Videen, T. O., MacLeod, A.-M. K., Haller, J. W. & Raichle, M. E. (1992) PET imagees of blood flow changes during anxiety: Correction [letter]. Science 256:1696. [aWTT]CrossRefGoogle ScholarPubMed
Dufossé, M., Ho, M., Jastreboff, P. & Miyashita, Y. (1978) A neuronal correlate in rabbit's cerebellum to adaptive modification of the vestibulo-ocular reflex. Brain Research 150:611–16. [MD]CrossRefGoogle ScholarPubMed
Dugas, C. & Smith, A. M. (1992) Responses of cerebellar Purkinje cells to slip of a hand-held object. Journal of Neurophysiology 67:483–95. [aAMS]CrossRefGoogle ScholarPubMed
Dunn, M. E. & Mugnaini, E. (1993) Influence of granule cells on the survival and differentiation of Purkinje cells in dissociated cerebellar cultures. Society for Neuroscience Abstracts 19:1723. [aDJL]Google Scholar
Dunwiddie, T. V. (1990) Adenosine and adenosine receptors, ed. Williams, M.. Humana Press. [aDJL]Google Scholar
East, S. J. & Garthwaite, J. (1990) Nanomolar NG-nitroarginine inhibits NMDA-induced cyclic GMP formation in rat cerebellum. European Journal of Pharmacology 184:311–13. [aSRV]CrossRefGoogle ScholarPubMed
East, S. J. & Garthwaite, J. (1992) Actions of a metabotropic glutamate receptor agonist in immature and adult rat cerebellum. European Journal of Pharmacology 219:395400. [aSRV]CrossRefGoogle ScholarPubMed
Ebner, T. J. & Bloedel, J. R. (1981a) Temporal patterning in simple spike discharge of Purkinje cells and its relationship to climbing fiber activity. Journal of Neurophysiology 45:933–47. [aJIS]CrossRefGoogle ScholarPubMed
Ebner, T. J. & Bloedel, J. R. (1981b) Role of climbing fiber afferent input in determining responsiveness of Purkinje cells to mossy fiber inputs. Journal of Neurophysiology 45:962–71. [aJIS]CrossRefGoogle ScholarPubMed
Ebner, T. J. & Bloedel, J. R. (1984) Climbing fiber action on the responsiveness of Purkinje cells to parallel fiber inputs. Brain Research 309:1822–186. [aJIS]CrossRefGoogle ScholarPubMed
Ebner, T. J., Flament, D. & Shanbhag, S. J. (1996) The cerebellum's role in voluntary motor learning: Clinical, electrophysiological, and imaging studies. In: Acquisition of motor behavior in vertebrates, ed. Bloedel, J. R., Ebner, T. J. & Wise, S. P.. MIT Press. [DF]Google Scholar
Ebner, T. J., Yu, Q. & Bloedel, J. R. (1983) Increase in Purkinje cell gain associated with naturally activated climbing fiber input. Journal of Neurophysiology 50:205–19. [aJIS]CrossRefGoogle ScholarPubMed
Ecclcs, J. C., Ito, M. & Szentagothai, J. (1967) The cerebellum as a neuronal machine. Springer-Verlag Berlin. [aFC, aAMS, aJIS, aWTT, MGP]CrossRefGoogle Scholar
Eccles, J. C., Llinás, R. & Sasaki, K. (1966) The excitatory synaptic action of climbing fibres on the Purkinje cells of the cerebellum. Journal of Physiology (London) 182:268–96. [aJIS]CrossRefGoogle ScholarPubMed
Eccles, J. C., Sabah, N. H., Schmidt, R. F. & Táboríková, H. (1972) Cutaneous mechanoreceptors influencing impulse discharges in cerebellar cortex: 3. In Purkinje cells by climbing fiber input. Experimental Brain Research 15:484–97. [aJIS]CrossRefGoogle ScholarPubMed
Edwards, F. A., Konnerth, A., Sakmann, B. & Takahashi, T. (1989) A thin slice preparation for patch-clamp recordings from neurones of the mammalian central nervous system. Pfügers Archiv 414:600–12. [aMKan]CrossRefGoogle ScholarPubMed
Eilers, J., Augustine, G. J. & Konnerth, A. (1995) Subthreshold synaptic Ca2* signalling in fine dendrites and spines of cerebellar Purkinje neurons. Nature 373:155–58. [NAH, DO, rSRV]CrossRefGoogle ScholarPubMed
Eisenman, L. N., Keifer, J. & Houk, J. C. (1991) Positive feedback in the cerebro-cerebellar recurrent network may explain rotation of population vectors. In: Analysis and modeling of neural systems, ed. Eeckman, F.. Kluwer. [arJCH]Google Scholar
Ekerot, C.-R., Garwicz, M. & Schouenborg, J. (1991) Topography and nociceptive receptive fields of climbing fibres projecting to the cerebellar anterior lobe in the cat. Journal of Physiology (London) 441:257–74. [aJCH]CrossRefGoogle Scholar
Ekerot, C. F. & Kano, M. (1985) Long-term depression of parallel fibre synapses following stimulation of climbing fibres. Brain Research 342:357–60. [aFC, aMKan, aDJL, aJIS, aWTT]CrossRefGoogle ScholarPubMed
Ekerot, C. F. & Kano, M. (1989) Stimulation parameters influencing climbing fibre induced long-term depression of parallel fibre synapses. Neuroscience Research 6:264–68. [aJCH, aDJL, CFE. JCF, EDS]CrossRefGoogle ScholarPubMed
Ekerot, C. F. & Oscarsson, O. (1981) Prolonged depolarization elicited in Purkinje cell dendrites by climbing fibre impulses in the cat. Journal of Physiology (London) 318:207–21. [aFC. aJIS]CrossRefGoogle ScholarPubMed
El-Husseini, A. E.-D., Bladen, C. & Vincent, S. R. (1995a) Expression of the olfactory cyclic nuceotide gated channel (CNG1) in the rat brain. Neuroreport 6:1331–35. [rSRV]CrossRefGoogle Scholar
El-Husseini, A. E.-D., Bladen, C. & Vincent, S. R. (1995b) Molecular characterization of a type II cyclic GMP-dependent protein kinase expressed in the rat brain. Journal of Neurochemistry 64:2814–17. [rSRV]CrossRefGoogle ScholarPubMed
Enright, J. T. & Hendriks, A. W. (1994) To stare or to scrutinize: “Grasping” the eye for better vision. Vision Research 34:2039–42. [GPVG]CrossRefGoogle ScholarPubMed
Escudero, M., de la Cruz, R. R. & Delgado-Garcia, J. M. (1992) A physiological study of vestibular and prepositus hypoglossi neurons projecting to the abducens nucleus in the alert cat. Journal of Physiology (London) 458:539–60. [aJIS]CrossRefGoogle Scholar
Fagni, L., Bossu, J. L. & Bockaert, J. (1991) Activation of a large-conductance Ca2*-dependent K* channel by stimulation of glutamate phosphoinositide-coupled receptors in cultured cerebellar granule cells. European Journal of Neuroscience 3:788–96. [aSRV]CrossRefGoogle ScholarPubMed
Farrant, M. or Cull-Candy, S. G. (1991) Excitatory amino acid receptor-channels in Purkinje cells in thin cerebellar slices. Proceedings of the Royal Society of London, Series B 244:179–84. [aSRV]Google ScholarPubMed
Feldman, A. G. (1980a) Superposition of motor programs: 2. Rapid forearm flexion in man. Neuroscience 5:9195. [aAMS]CrossRefGoogle Scholar
Feldman, A. G. (1980b) Superposition of motor programs: 1. Rhjthmic forearm movements in man. Neuroscience 5:8190. [aAMS]CrossRefGoogle ScholarPubMed
Feldman, A. G., Adamovich, S. V. & Levin, M. D. (1995) The relationship between control, kinematic and electromyographic variables in fast single-joint movements in humans. Experimental Brain Research 103:440–50. [AGF]CrossRefGoogle ScholarPubMed
Feldman, A. G. & Levin, M. F. (1993) Control variables and related concepts in motor control. Concepts in Neuroscience 4:2551. [AGF]Google Scholar
Feldman, A. G. & Levin, M. F. (1995) Positional frames of reference in motor control: Their origin and use. Beliavioral and Brain Sciences 78:723806. [AGF]CrossRefGoogle Scholar
Ferrendelli, J. A., Chang, M. M. & Kinscherf, D. A. (1974) Elevation of cyclic GMP levels in central nervous system by excitatory and inhibitory amino acids. Journal of Neurochemistry 22:535–40. [aSRV]CrossRefGoogle ScholarPubMed
Ferrendelli, J. A., Kinscherf, D. A. & Kipnis, D. M. (1972) Effects of amphetamine, chlorpromazine and reserpine on cyclic GMP and cyclic AMP levels in mouse cerebellum. Biochemical and Biophysical Research Communications 46:2114–20. [aSRV]CrossRefGoogle ScholarPubMed
Ferster, D. & Spruston, N. (1995) Cracking the neural code. Science 270:756–57. [EDS]CrossRefGoogle Scholar
Fiala, J. C., Grossberg, S. & Bullock, D. (1995) Metabotropic glutamate receptor activation in cerebellar Purkinje cells as substrate for adaptive timing of the classically conditioned eye blink response. Technical Report CSD/CNS-TR-95–029, Department of Cognitive and Neural Systems, Boston University. ]JCF]Google Scholar
Fiez, J. A., Petersen, S. E., Cheney, M. K. & Raichle, M. E. (1992) Impaired nonmotor learning and error detection associated with cerebellar damage. Brain 115:155–78. [aWTT]CrossRefGoogle ScholarPubMed
Fitts, P. M. (1954) The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology 47:381–91. [aAMS, GPVG]CrossRefGoogle ScholarPubMed
Flament, D., Eilermann, J., Ugurbil, K. & Ebner, T. J. (1994) Functional magnetic resonance imaging (fMRI) of cerebellar activation while learning to correct for visuomotor errors. Society for Neuroscience Abstracts 20:20. [DF]Google Scholar
Flament, D. & Hore, J. (1986) Movement and electromyographic disorders associated with cerebellar dysmetria. Journal of Neurophysiology 55:1221–33. [aAMS]CrossRefGoogle ScholarPubMed
Flament, D., Lee, J.-H., Ugurbil, K. & Ebner, T. J. (1995) Changes in motor cortical and subcortical activity, during the acquisition of motor skill, investigated usuing functional MRI (4T, echo planar imaging). Society for Neuroscience Abstracts 21:1422. [DF]Google Scholar
Flash, T. (1987) The control of hand equilibrium trajectories in multi-joint arm movements. Biological Cybernetics 57:257–74. [HG]CrossRefGoogle ScholarPubMed
Flash, T. & Mussa-Ivaldi, F. A. (1990) Human arm stiffness characteristics during the maintenance of posture. Experimental Brain Research 82:315–26. [aAMS]CrossRefGoogle ScholarPubMed
Floeter, M. K. & Greenough, W. T. (1979) Cerebellar plasticity: Modification of Purkinje cell structure by differential rearing in monkeys. Science 206:227–29. [aWTT]CrossRefGoogle ScholarPubMed
Flourens, P. (1824/1968) Recherches expérimentales sur les propriétés et les fonctions du systèm nerveux dan les animaux vertébres. Paris: Cervot. Translated, 1968, in: The human brain and spinal cord, ed. Clarke, E. & O'Malley, C. D.. University of California Press, Berkeley. [aJCH, aWTT, RCM]Google Scholar
Forget, R. & Lamarre, Y. (1987) Rapid elbow flexion in the absence of proprioceptive and cutaneous feedback. Human Neurobiology 6:2737. [rAMS]Google ScholarPubMed
Förstermann, U., Gorsky, L. E., Pollock, J. S., Schmidt, H. H. H. W., Heller, M. & Murad, F. (1990) Regional distribution of EDRF/NO-synthesizing enzymes(s) in rat brain. Biochemical and Biophysical Research Communications 168:727–32. [aSRV]CrossRefGoogle Scholar
Fortier, P. A., Kalaska, J. F. & Smith, A. M. (1989) Cerebellar neuronal activity related to whole-arm reaching movements in the monkey. Journal of Neurophysiology 62:198211. [aAMS]CrossRefGoogle ScholarPubMed
Fortier, P. A., Smith, A. M. & Kalaska, J. F. (1993) Comparison of cerebellar and motor cortex activity during reaching: Directional tuning and response variability. Journal of Neurophysiology 69:1136–49. [aAMS, HG]CrossRefGoogle ScholarPubMed
Fortier, P. A., Smith, A. M. & Rossignol, S. (1987) Locomotor deficits in the mutant mouse Lurcher. Experimental Brain Research 66:271–86. [aAMS]CrossRefGoogle ScholarPubMed
Foy, M. R. & Thompson, R. F. (1986) Single unit analysis of Purkinje cell discharge in classically conditioned and untrained rabbits. Neuroscience Abstracts 12:753. [RFT]Google Scholar
Frens, M. A., Van Opstal, A. J. (1994) Auditory-evoked saccades in two dimensions: Dynamical characteristics, influence of eye position and sound source spectrum. In: Information processing underlying gaze control, ed. Delgado-Garcla, J., Vidal, P. & Godaux, E.. Oxford University Press. [CG]Google Scholar
Frick, R. B. (1982) The ego and the vestibulocerebellar system. Psychoanalytic Quarterly 51:93122. [JDS]CrossRefGoogle ScholarPubMed
Fries, W. (1990) Pontine projection from striate and prestriate visual cortex in the macaque monkey: An anterograde study. Visual Neuroscience 4:205–16. [JDS]CrossRefGoogle ScholarPubMed
Friston, K. J., Frith, C. D., Passingham, R. E., Liddle, P. F. & Frackowiak, R. S. J. (1992) Motor practice and neurophysiological adaptation in the cerebellum: A positron tomography study. Proceedings of the Royal Society of London 248:223–28. [aWTT, DT]Google ScholarPubMed
Frolov, A. A., Roschin, V. Y. & Biryukova, E. V. (1993) Adaptive neural model of multijoint movement control by working point analysis. Neural Network World 4:141–56. [MD]Google Scholar
Frysinger, R. C., Bourbonnais, D., Kalaska, J. F. & Smith, A. M. (1984) Cerebellar cortical activity during antagonist cocontraction and reciprocal inhibition of forearm muscles. Joumal of Neurophysiology 51(1):3249. [aAMS, aWTT, HG]CrossRefGoogle ScholarPubMed
Fuchs, A. F., Robinson, F. R. & Straube, A. (1993) Role of the caudal fastigial nucleus in saccade generation: 1. Neuronal discharge pattern. Journal of Neurophysiology 70:1723–40. [aJCH, PD]CrossRefGoogle ScholarPubMed
Fujita, M. (1982) Adaptive filter model of the cerebellum. Biological Cybernetics 45:195206. [aJCH]CrossRefGoogle ScholarPubMed
Fukuda, M., Yamamoto, T. & Llinás, R. (1987) Simultaneous recordings from Purkinje cells of different folia in the rat cerebellum and their relation to movement. Society for Neuroscience Abstracts 13:603. [aJIS]Google Scholar
Funabiki, K., Mishina, M. & Hirano, T. (1995) Retarded vestibular compensation in mutant mice deficient d2 glutamate receptor subunit. NeuroReport 7:189–92. [TH, rMKan]Google Scholar
Furuyama, T., Inagaki, S. & Takagi, H. (1993) Localizations of al and bl subunits of soluble guanylate cyclase in the rat brain. Molecular Brain Research 20:335–44. [aSRV]CrossRefGoogle Scholar
Fushiki, H., Sato, Y., Miura, A. & Kawasaki, T. (1994) Climbing fiber responses of Purkinje cells to retinal image movement in cat cerebellar flocculus. Journal of Neurophysiology 71:1336–50. [aJIS]CrossRefGoogle ScholarPubMed
Gabbiani, F., Midtgaard, J. & Knöpfel, T. (1994) Synaptic integration in a model of cerebellar granule cell. Journal of Neurophysiology 72:9991009. [KH]CrossRefGoogle Scholar
Gabrieli, J. D. E., McGlinchey-Berroth, R., Canillo, M. C., Gluck, M. A., Cermak, L. S. & Disterhoft, J. F. (1995) Intact delay-eyeblink classical conditioning in amnesics. Behavioral Neuroscience 109:819–27. [CW]CrossRefGoogle Scholar
Gaffan, D. (1992) The role of the hippocampus-fomix-mammillary system in episodic memory. In: Neuropsychology of memory, ed. Squire, L. R. & Butters, N.. Guilford. [SMO]Google Scholar
Gaffan, D. & Harrison, S. (1989) A comparison of the effects of fomix transection and sulcus principalis ablation upon spatial learning by monkeys. Behavioral Brain Research 31:207–20. [SMO]CrossRefGoogle Scholar
Galiana, H. L. (1985) Comissural vestibular nuclear coupling: A powerful putative site for producing adaptive change. In: Adaptive mechanisms in gaze control: Facts and theories, ed. Berthoz, A. & Melvill Jones, G.. Elsevier. [aJCH]Google Scholar
Galiana, H. L. (1986) A new approach to understanding adaptive visual-vestibular interactions in the central nervous system. Journal of Neurophysiology 55:349–74. [aJCH]CrossRefGoogle ScholarPubMed
Galiana, H. L. & Guitton, D. (1992) Central organization and modelling of eye-head coordination during orienting gaze shifts. In: Sensing and controlling motion: Vestibular and sensorimotor function, vol. 656, ed. Cohen, B., Tomka, D. L. & Guedry, F.. Annals of the New York Academy of Science. [aJCH]Google Scholar
Galiana, H. L. & Outerbridge, J. S. (1984) A bilateral model for central neural pathways in the vestibuloocular reflex. Journal of Neurophysiology 51:210–41. [aJCH]CrossRefGoogle ScholarPubMed
Galione, A., White, A., Willmott, N., Turner, M., Potter, B. V. L. & Watson, S. P. (1993) cGMP mobilizes intracellular Ca2* in sea urchin eggs by stimulating cyclic ADP-ribose synthesis. Nature 365:456–59. [aSRV]CrossRefGoogle ScholarPubMed
Gao, J.-H., Parsons, L. M., Bower, J. M. Xiong, J., Li, J. & Fox, P. T. (in press) Cerebellum implicated in sensory acquisition and discrimination rather than motor control. Science. [JMB]Google Scholar
Garthwaite, J. (1991) Glutamate, nitric oxide and cell-cell signalling in the nervous system. Trends in Neuroscience 14:6067. [aSRV]CrossRefGoogle ScholarPubMed
Garthwaite, J., Charles, S. L. & Chess-Williams, R. (1988) Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature 336:385–88. [aFC, aSRV]CrossRefGoogle ScholarPubMed
Garthwaite, J. & Brodbelt, A. R. (1989) Glutamate as the principal mossy fibre transmitter in rat cerebellum: Pharmacological evidence. European Journal of Neuroscience 2:177–80. [aSRV]CrossRefGoogle Scholar
Garthwaite, J. & Garthwaite, G. (1987) Cellular origins of cyclic GMP responses to excitatory amino acid receptor agonists in rat cerebellum in vitro. Journal of Neurochemistry 48:2939. [aDJL, LK]CrossRefGoogle ScholarPubMed
Garthwaite, J., Garthwaite, G., Palmer, R. M. J. & Moncada, S. (1989a) NMDA receptor activation induces nitric oxide synthesis from arginine in rat brain slices. European Journal of Pharmacology 172:413–16. [aSRV]CrossRefGoogle ScholarPubMed
Garthwaite, J., Southam, E. & Anderson, M. (1989b) A kainate receptor linked to nitric oxide synthesis from arginine. Journal of Neurochemistry 53:1952–54. [aFC, aSRV]CrossRefGoogle ScholarPubMed
Gasic, G. P. & Hollman, M. (1992) Molecular neurobiology of glutamate receptors. Annual Review of Physiology 54:507–36. [aFC]CrossRefGoogle ScholarPubMed
Gauthier, G. M., Hofferer, J.-M., Hoyt, W. F. & Stark, L. (1979) Visual-motor adaptation: Quantative demonstration in patients with posterior fossa involvement. Archives of Neurology 36:155–60. [aWTT]CrossRefGoogle Scholar
Gellman, R. S., Gibson, A. R. & Houk, J. C. (1985) Inferior olivary neurons in the awake cat: Detection of contact and passive body displacement. Journal of Neurophysiology 54:4060. [aJCH, aJIS, RCM, RFT, CW]CrossRefGoogle ScholarPubMed
Gellman, R. S., Houk, J. C. & Gibson, A. R. (1983) Somatosensory properties of the inferior olive in the cat. Journal of Comparative Neurology 215:228–43. [aJIS, RFT]CrossRefGoogle ScholarPubMed
Gcorgopoulos, A. P., Kalaska, J. F., Crutcher, M. D., Caminiti, R. & Massey, J. T. (1984) The representation of movement direction in the motor cortex: Single cell and population studies. In: Dynamic aspects of neocortical function, ed. Edelman, G. M., Cowan, W. M. & Gall, W. E.. Wiley. [CG]Google Scholar
Georgopoulos, A. P. & Massey, J. T. (1987) Cognitive spatial-motor processes: 1. The making of movements at various angles from a stimulus direction. Experimental Brain Research 65:361–70. [CG]CrossRefGoogle ScholarPubMed
Gerrits, N. M., Voogd, J. & Magras, I. N. (1985) Vestibular afferents of the inferior olive and the vestibulo-olivo-cerebellar climbing fiber pathway to the flocculus in the cat. Brain Research 332:325–36. [aJIS]CrossRefGoogle Scholar
Ghelarducci, B., Ito, M. & Yagi, N. (1975) Impulse discharges From flocculus Purkinje cells of alert rabbit during visual stimulation combined with horizontal head rotation. Brain Research 87:6672. [aJIS]CrossRefGoogle ScholarPubMed
Ghez, C., Hening, W. & Favilla, M. (1990) Parallel interacting channels in the initiation and specification of motor response features. In: Attention and performance: 8. Motor representation and control, ed. Jeannerod, M.. Erlbaum. [aJCH]Google Scholar
Gibson, A. R., Horn, K. M. & Van Kan, P. L. E. (1990) Interpositus discharge during reaching. Society for Neuroscience Abstracts 16:637. [aAMS]Google Scholar
Gibson, A. R., Robinson, F. R., Alam, J. & Houle, J. C. (1987) Somatotopic alignment between climbing fiber input and nuclear output of the intermediate cerebellum. Joumal of Comparative Neurology 260:362–77. [aJCH.CW]CrossRefGoogle ScholarPubMed
Gielen, C. C. A. M. & van Gisbergen, J. A. M. (1990) The visual guidance of saccades and fast aiming movements. News in Physiological Science 5:5863. [aJCH]Google Scholar
Gilbert, P. F. C. (1974) A theory of memory that explains the function and structure of the cerebellum. Brain Research 70:118. [aJCH, aWTT, PFCG]CrossRefGoogle ScholarPubMed
Gilbert, P. F. C. (1975) How the cerebellum could memorize movements. Nature (London) 254:688–89. [aJCH, PFCG]CrossRefGoogle Scholar
Gilbert, P. F. C. & Thach, W. T. (1977) Purkinje cell activity during motor learning. Brain Research 128:309–28. [aJCH, aJIS, aWTT, MD, PFCG, JCH, DT]CrossRefGoogle ScholarPubMed
Gilman, S. (1969a) Fusimotor fiber responses in the decerebellate cat. Brain Research 14:218–21. [aAMS]CrossRefGoogle ScholarPubMed
Gilman, S. (1969b) The mechanism of cerebellar hypotonia: An experimental study in the monkey. Brain 92:621–38. [aAMS]CrossRefGoogle ScholarPubMed
Glasauer, S., Amoriaum, M. A., Vitte, E. & Berthoz, A. (1994) Goal-directed linear locomotion in normal and Iabyrintfiine-defective subjects. Experimental Brain Research 98:323–35. [SMO]CrossRefGoogle ScholarPubMed
Glaum, S. R., Slater, N. T., Rossi, D. J. & Miller, J. R. (1992) The role of metabotropic glutamate receptors at the parallel-fiber-Purkinje cell synapse. Journal of Neurophysiology 68:1453–62. [aFC, aSRV, aDJL, LJB, NAH, DO]CrossRefGoogle ScholarPubMed
Glickstein, M. (1993) Motor skills but not cognitive tasks. Trends in Neuroscience 16:450–51. [PFCG]CrossRefGoogle Scholar
Glickstein, M. (1994) Cerebellar agenesis. Brain 117:1209–12. [SMO]CrossRefGoogle ScholarPubMed
Glickstein, M., Gerrits, N., Kralj-Hans, J., Mercier, B., Stein, J., Voogd, J. (1994) Visual pontocerebellar projections in the macaque. Journal of Comparative Neurology 349:5172.CrossRefGoogle ScholarPubMed
Glickstein, M., May, J. G. & Mercier, B. E. (1985) Corticopontine projection in the macaque: The distribution of labeled cortical cells after large injections of horseradish peroxidase in the pontine nuclei. Journal of Comparative Neurology 235:343–59. [JDS]CrossRefGoogle ScholarPubMed
Gluck, M. A. & Thompson, R. F. (1990) Adaptive signal processing and the cerebellum: Models of classical conditioning and VOR adaptation. In: Neuroscience and connectionist theory, ed. Gluck, M. A. & Rumelhart, D. E.. Erlbaum. [aJCH]Google Scholar
Goldberg, M. E., Musil, S. Y., Fitzgibbon, E. J., Smith, M. & Oison, C. R. (1993) The role of the cerebellum in the control of saccadic eye movements. In: Role of the basal ganglia and cerebellum in voluntary movements, ed. Mano, N., Hamada, I. & DeLong, M. R.. Elsevier. [PD, CG]Google Scholar
Gomi, H. & Kawato, M. (1992) Adaptive feedback control models of the vestibulocerebellum and spinocerebellum. Biological Cybernetics 68:105–14. [aJCH, aAMS]CrossRefGoogle ScholarPubMed
Gomi, H. & Kawato, M. (1995) The change of human arm mechanical impedance during movements under different environmental conditions. In: Society for Neuroscience 25th Annual Meeting. San Diego, CA: Society for Neuroscience. [HG, MKaw]Google Scholar
Gomi, H. & Kawato, M. (1996) Mechanical impedance of human arm during multi-joint movemnt in the horizontal plane. Jounal of the Society of Instrument and Control Engineers 32(3) [in Japanese]. [HG]Google Scholar
Gonshor, A. & Melvill-Jones, G. (1976) Extreme vestibulor-ocular adaptation induced by prolonged optical reversal of vision. Journal of Physiology (London) 256:381414. [aWTT, rJIS]CrossRefGoogle Scholar
Goodkin, H. P., Keating, J. G., Martin, T. A. & Thach, W. T. (1993) Preserved simple and impaired compound movement after infarction in the territory of the superior cerebellar artery. Canadiam Journal of Neurology Science 20(suppl.3):S93104. [aWTT]CrossRefGoogle ScholarPubMed
Goodman, D. & Kelso, J. (1983) Exploring the functional significance of physiological tremor: A biospectroscopic approach. Experimental Brain Research 49:419–31. [aJIS]CrossRefGoogle ScholarPubMed
Goodman, R. R., Kuhar, M. J., Hester, L. & Snyder, S. H, (1983) Adenosine receptors: Autoradiographic evidence for their location on axon terminals of excitatory neurons. Science 220:967–69. [aDJL]CrossRefGoogle ScholarPubMed
Gorassini, M., Prochazka, A. & Taylor, J. L. (1993) Cerebellar ataxia and muscle spindle sensitivity. Journal of Neurophysiology 70:1853–62. [aAMS]CrossRefGoogle ScholarPubMed
Görcs, T. J., Penke, B., Bóti, Z., Katarova, Z. & Hámori, J. (1993) Immunohistochemical visualization of a metabotropic glutamate receptor. NeuroReport 4:283–86. [aSRV]Google ScholarPubMed
Gordon, A. M., Huxley, A. F. & Julien, F. J. (1966) The variation in isometric tension with sarcomere length in vertebrate muscle fibres. Journal of Physiology 184:170–92. [aAMS]CrossRefGoogle ScholarPubMed
Gormezano, I. (1966) Classical conditioning. In: Experimental methods and instrumentation in psychology, ed. Sidowski, J. B.. McGraw-Hill. [CW]Google Scholar
Goslow, G. E. Jr., Reinking, R. M. & Stuart, D. G. (1973) The cat step cycle: Hind limb joint angles and mucles lengths during unrestrained locomotion. Journal of Morphology 141:142. [aAMS]CrossRefGoogle Scholar
Gottlieb, J. P., MacAvoy, M. G. & Bruce, C. J. (1994) Neural responses related to smooth-pursuit eye movements and their correspondence with electrically elicited smooth eye movements in the primate frontal eye field. Journal of Neurophysiology 72:1634–53. [PVD]CrossRefGoogle ScholarPubMed
Graf, W., Simpson, J. I. & Leonard, C. S. (1988) Spatial organization of visual messages of the rabbit's cerebellar flocculus. II. Complex and simple spike responses of Purkinje cells. Journal of Neurophysiology 60:20912121. [arJIS]CrossRefGoogle ScholarPubMed
Grafman, J., Litvan, I., Massaquoi, S., Stewart, M., Sirigu, A., & Hallett, M. (1992) Cognitive planning deficity in patients with cerebellar atrophy. Neurology 42:14931496.CrossRefGoogle Scholar
Grafton, S. T., Hazeltine, E. & Ivry, R. (1995) Functional mapping of sequence learning in normal humans. Journal of Cognitive Neuroscience 7:497510. [MH]CrossRefGoogle ScholarPubMed
Grafton, S. T., Mazziotta, J. C., Presty, S., Friston, K. J., Frackowiak, R. S. J. & Phelps, M. E. (1992) Functional anatomy of human procedural learning determined with regional cerebral blood flow and PET. Journal of Neuroscience 12:2542–48. [aWTT]CrossRefGoogle ScholarPubMed
Granit, R. & Phillips, C. G. (1956) Excitatory and inhibitory processes acting upon individual Purkinje cells of the cerebellum in cats. Journal of Physiology (London) 133:520–47. [aJIS]CrossRefGoogle ScholarPubMed
Grant, S. G., O'Dell, T. J., Karl, K. A., Stein, P. L., Soriano, P. & Kandel, E. R. (1992) Impaired long-term potentiation, spatial learning, and hippocampal development in fyn mutant mice. Science 258:1903–10. [aMKan]CrossRefGoogle ScholarPubMed
Graybiel, A. M., Nauta, H. J. W., Lasek, R. J. & Nauta, W. J. H. (1973) A cerebello-olivary pathway in the cat: An experimental study using autoradiographic tracing techniques. Brain Research 58:205–11. [aJIS]CrossRefGoogle Scholar
Greenberg, L. H., Troyer, E., Ferrendelli, J. A. & Weiss, B. (1978) Enzymatic regulation of the concentration of cyclic GMP in mouse brain. Neuropharmacology 17:737–45. [aSRV]CrossRefGoogle ScholarPubMed
Greengard, P., Jen, J., Nairn, A. C. & Stevens, C. F. (1991) Enhancement of the glutamate receptor response by cAMP dependent protein kinase in hippocampal neurons. Science 253:1135–38. [MB]CrossRefGoogle ScholarPubMed
Grill, S. E., Hallett, M., Marcus, C., McShane, L. (1994) Disturbance of kinaesthesia in patients with cerebellar disorders. Brain 117:1433–47.CrossRefGoogle ScholarPubMed
Groenewegen, H. J. & Voogd, J. (1977) The parasagittal zonation within the olivocerebellar projection: 1. Climbing fiber distribution in the vermis of the cat cerebellum. Journal of Comparative Neurology 174:417–88. [aJIS]CrossRefGoogle Scholar
Groenewegen, H. J., Voogd, J. & Freedman, S. L. (1979) The parasagittal zonation within the olivocerebellar projection: 2. Climbing fiber distribution in the intermediate and hemispheric parts of cat cerebellum. Journal of Comparative Neurology 183:551602. [aJIS]CrossRefGoogle Scholar
Grossberg, S. & Kuperstein, M. (1989) Neural dynamics of adaptive sensory-motor control. Pergamon. [aJCH]Google Scholar
Grover, L. M. & Teyler, T. J. (1992) N-methyl-D-aspartate receptor-independent long-term potentiation in area CAI of rat hippocampus: Input-specific induction and preclusion in a non-tetanized pathway. Neuroscience 49:711. [MB]CrossRefGoogle Scholar
Gruart, A. & Yeo, C. H. (1995) Cerebellar cortex and eyeblink conditioning: Bilateral regulation of conditioned responses. Experimental Brain Research 104:431–48. [CW]CrossRefGoogle ScholarPubMed
Grusser, O. J., Pause, M. & Schreiter, U. (1990) Vestibular neurones in the parietoinsular cortex of monkeys ( macaca fascicularis): Visual and neck receptor responses. Journal of Physiology 430:559–83. [SMO]CrossRefGoogle ScholarPubMed
Guidotti, A., Biggio, G. & Costa, E. (1975) 3-AcetyIpyridine: A tool to inhibit the tremor and increase of cGMP content in cerebellar cortex elicited by harmaline. Brain Research 96:201–5. [aSRV]CrossRefGoogle ScholarPubMed
Guiramand, J., Vignes, M., Mayat, E., Lebrun, F., Sassetti, I. & Recasens, M. (1991) A specific transduction mechanism for the glutamate action on phosphoinositide metabolism via the quisqualate metabotropic receptor in rat brainsynaptoneurosomes: 1. External Na+ requirement. Journal of Neuwchemistry 57:14881500. [aDJL]CrossRefGoogle ScholarPubMed
Guitton, D., Munoz, D. P. & Galiana, H. L. (1990) Gaze control in the cat: Studies and modeling of the coupling between orienting eye and head movements in different behavioral tasks. Journal of Neurophysiology 64:509–31. [aJCH]CrossRefGoogle ScholarPubMed
Gusovsky, F., Hollingsworth, E. B. & Daly, J. W. (1986) Regulation of phosphatidylinositol turnover in brain synaptoneurosomes: Stimulatory effects of agents that enhance influx of sodium ions. Proceedings of the National Academy of Science of the USA 83:3003–7. [aDJL]CrossRefGoogle ScholarPubMed
Guzmán-Lara, S. (1993) Adjusting connections using reflexes as guklance. NPB Technical Report 8, Northwestern University Institute of Neuroscience. [aJCH]Google Scholar
Haby, C., Lisovoski, F., Aunis, D. & Zwiller, J. (1994) Stimulation of the cyclic GMP pathway by NO induces expression of the immediate early genes c-fos and junB in PC12 cells. Journal of Neurochemistry 62:496501. [aSRV]CrossRefGoogle ScholarPubMed
Haggard, P. N., Jenner, J. R. & Wing, A. M. (1994) Kinematic patterns in a case of unilateral cerebellar damange. Neuwpsychologia 32:827–46. [PH]CrossRefGoogle Scholar
Haggard, P. & Wing, A. M. (1995) Coordinated responses following mechanical perturbation of the arm during prehension. Experimental Brain Research 102:483–94. [PH]CrossRefGoogle ScholarPubMed
Haidamous, M., Kouyoumdjuan, J. C., Briley, P. A. & Gonnard, P. (1980) In vivo effects of noradrenaline and noradrenergic receptor agonists and antagonists on rat cerebellar cyclic GMP levels. European Journal of Pharmacology 63:287–94. [aSRV]CrossRefGoogle ScholarPubMed
Haier, R. J., Siegel, B. W. Jr., MacLachlan, A., Soderling, E., Lottenberg, S. & Buchbaum, M. (1992) Regional glucose metabolic changes after learning a complex visuospatial motor task: A positron emission tomography study. Brain Research 570:134–43. [aWTT]CrossRefGoogle Scholar
Hallett, M., Berardelli, A., Matheson, J., Rothwell, J. & Marsden, C. D. (1991) Physiological analysis of simple rapid movements in patients with cerebellar deficits. Journal of Neurology, Neurosurgery, and Psychiatry 53:124–33. [JH]CrossRefGoogle Scholar
Hallett, M., Pascual-Leone, A. & Topica, H. (in press) Adaptation and skill learning. Evidence for different neural substrates. In: Acquisition of motor behavior in vertebrates, ed. Bloedel, J. R., Ebner, T. J. & Wise, S. P.. [MH]Google Scholar
Hallett, M., Shahani, B. T. & Young, R. R. (1975) EMG analysis of patients with cerebellar deficits. Journal of Neurology, Neurosurgery and Psychiatry 38:1163–69. [aAMS, aWTT, CG. JH]CrossRefGoogle ScholarPubMed
Hansel, C., Batchelor, A., Cuénod, M., Garthwaite, J., Knöpfel, T. & Do, K. Q. (1992) Delayed increase of extracellular arginine, the nitric oxide precursor, following electrical white matter stimulation in rat cerebellar slices. Neuroscience Letters 142:211–14. [arSRV]CrossRefGoogle ScholarPubMed
Harris, C. M. (1995) Does saccadic undershoot minimize saccadic flight-time? A Monte Carlo study. Vision Research 35:691701. [PD]CrossRefGoogle ScholarPubMed
Harrison, N. L. & Lambert, N. A. (1989) Modification of GABAA receptor function by an analog of cyclic AMP. Neuroscience Letters 105:137–42. [aMKan]CrossRefGoogle ScholarPubMed
Hartell, N. A. (1994a) Induction of cerebellar long-term depression requires activation of glutamate metabotropic receptors. NeuroReport 5:913–16. [NAH, MKan, rSRV]CrossRefGoogle ScholarPubMed
Hartell, N. A. (1994b) cGMP acts within cerebellar Purkinje cells to produce long-term depression via mechanisms involving PKC and PKG. NeuroReport 5:833–36. [NAH, rDJL, rSRV]CrossRefGoogle ScholarPubMed
Hartell, N. A. (in press) Strong activation of paralell fibers produces localized calcium transients and a form of LTD which spreads to distant synapses. Neuron. [NAH, rDJL]Google Scholar
Harting, J. K. (1977) Descending pathways from the superior colliculus: An autoradiographic analysis in the rhesus monkey (Macaca mulatta). Journal of Comparative Neurology 173:583612. [JDS]CrossRefGoogle ScholarPubMed
Harvey, R. J., Porter, R. & Rawson, J. A. (1977) The natural discharges of Purkinje cells in paravermal regions of lobules V and VI of the monkey's cerebellum. Journal of Physiology 271:515–36. [arJCH]CrossRefGoogle ScholarPubMed
Hartell, N. A. (1979) Discharges of intracerebellar nuclear cells in monkeys. Journal of Physiology 297:559–80. [aJCH]Google Scholar
Hasan, Z. (1986) Optimized movement trajectories and joint stiffness in unperturbed, inertially loaded movements. Biological Cybernetics 53:373–82. [arAMS]CrossRefGoogle ScholarPubMed
Hassler, R. (1950) Uber kleinhimprojektionen zum mittlehim und thalamus beim menschen. Deutsche Zeitscrift fur Nervenheikunde 163:629–71. [aWTT]CrossRefGoogle Scholar
Hawkes, R., Blyth, S., Chockkan, V., Tano, D., Ji, Z. & Mascher, C. (1993) Structural and molecular compartmentation in the cerebellum. Canadian Journal of Neurological Science 20:S29–S35. [aJCH]Google ScholarPubMed
Heath, R. G. (1977) Modulation of emotion with a brain pacemaker. Joumal of Nervous and Mental Disease 165:300–17. [JDS]CrossRefGoogle Scholar
Hebb, D. O. (1949) The organization of behavior. Wiley. [aFC, aAMS]Google Scholar
Heck, D. (1993) Rat cerebellar cortex in vitro responds specifically to moving stimuli. Neuroscience Letters 157:9598. [FS]CrossRefGoogle ScholarPubMed
Heck, D. (1995) Sequential input to guinea pig cerebellar cortex in vitro strongly affects Purkinje cells via parallel fibers. Naturwissenschaften 82:201–3. [FS]CrossRefGoogle Scholar
Hecker, M., Sessa, W. C., Harris, H. J., Anggard, E. E. & Vane, J. R. (1990) The metabolism of L-arginine and its significance for the biosynthesis of endothelium-derived relaxing factor: Cultured endothelial cells recycle L-citrulline to L-arginine. Proceedings of the National Academy of Sciences of the USA 87:8612–16. [LK]CrossRefGoogle Scholar
Hemart, N., Daniel, H., Jaillard, D. & Crépel, F. (1994) Properties of glutamate receptors are modified during long-term depression in cerebellar Purkinje cells. Neuroscience Research 19:213–21. [aFC, rDJL]CrossRefGoogle ScholarPubMed
Hemart, N., Daniel, H., Jaillard, D. & Crépel, F. (1995) Receptors and second messengers involved in long-term depression in rat cerebellar slices in vitro: A reappraisal. European Journal of Neuroscience 7:4553. [aFC, DO, rDJL, rSRV]CrossRefGoogle ScholarPubMed
Herdnon, R. M. & Coyle, J. T. (1978). Glutaminergic innervation, kainic acid and selective vulnerability in the cerebellum. In: Kainic acid as a tool in neurobiology, ed. McGeer, G., Olney, J. W. & McGeer, P. L.. Raven. [aFC]Google Scholar
Herrmann-Frank, A. & Varsanyi, M. (1993) Enhancement of Ca2* release channel activity by phosphorylation of the skeletal muscle ryanodine receptor. Federation of European Biochemical Societies Letters 332:237–42. [aSRV]CrossRefGoogle ScholarPubMed
Hertz, J., Krogh, A. & Palmer, R. G. (1991) Introduction to the theory of neural computation. Addison-Wesley. [EDS]Google Scholar
Hesslow, G. (1994a) Correspondence between climbing fibre input and motor output in eyeblink related areas in cat cerebellar cortex. Journal of Physiology 476:229–44. [GH]CrossRefGoogle ScholarPubMed
Hesslow, G. (1994b) Inhibition of classically conditioned eyeblink responses by stimulation of the cerebellar cortex in the cat. Journal of Physiology 476:245–25. [GH]CrossRefGoogle Scholar
Hidaka, H., Tanaka, T., Onoda, K., Hagiwara, M., Watanabe, M., Ohta, H., Ito, Y., Tsurudome, M. & Yoshida, T. (1988) Cell-specific expression of protein kinase C isozymes in the rabbit cerebellum. Journal of Biological Chemistry 263:4523–26. [aFC, aDJL]CrossRefGoogle Scholar
Hikosaka, O., Matsumara, M., Kojima, J. & Gardiner, T. W. (1993) Role of basal ganglia in initiation and suppression of saccadic eye movements. In: Role of the cerebellum and basal ganglia in voluntary movement, ed. Mano, N., Hamada, I. & DeLong, M. R.. Excerpta Medica. [MAA]Google Scholar
Hirano, T. (1990a) Depression and potentiation of the synaptic transmission between a granule cell and a Purkinje cell in rat cerebellar culture. Neuwscience Letters 119:141–44. [aDJL]CrossRefGoogle Scholar
Hirano, T. (1990b) Effects of postsynaptic depolarization in the induction of synaptic depression between a granule cell and a Purkinje cell in rat cerebellar culture. Neuroscience Letters 119:145–47. [aDJL, aMKan]CrossRefGoogle Scholar
Hirano, T. (1991) Differential pre- and postsynaptic mechanisms for synaptic potentiation and depression between a granule cell and a Purkinje cell in rat cerebellar culture. Synapse 7:321–23. [aDJL]CrossRefGoogle Scholar
Hirano, T. & Kasono, K. (1993) Spatial distribution of excitatory and inhibitory synapses on a Purkinje cell in rat cerebellar culture. Journal of Neurophysiology 70:1316–25. [aDJL]CrossRefGoogle ScholarPubMed
Hirano, T. Kasono, K., Araki, K. & Mishina, M. (1995) Suppression of LTD in cultured Purkinje cells deficient in the glutamate receptor d2 subunit. NeuroReport 6:524–26. [TH, MKan, rDJL, rSRV]CrossRefGoogle Scholar
Hirano, T., Kasono, K., Araki, K., Shinozuka, K. & Mishina, M. (1994) Involvement of the glutamate receptor d2 subunit in the long-term depression of glutamate responsiveness in cultured rat Purkinje cells. Neuroscience Letters 182:172–76. [TH, MKan, rDJL]CrossRefGoogle Scholar
Hirsch, J. C. & Crépel, F. (1990) Use-dependent changes in synaptic efficacy in rat prefrontal neurons in vitro. Journal of Physiology 427:3149. [aFC]CrossRefGoogle ScholarPubMed
Hoff, B. & Arbib, M. A. (1992) A model of the effects of speed, accuracy, and perturbation on visually guided reaching. In: Control of arm movement in space: Neurophysiological and computational approaches [Experimental Brain Research Series 22], ed. Caminiti, R., Johnson, P. B. & Bumod, Y.. [MAA]Google Scholar
Hoffer, B. J., Siggins, G. R., Oliver, A. P. & Bloom, F. E. (1971) Cyclic AMP mediation of norepinephrine inhibition in rat cerebellar cortex: A unique class of synaptic responses. Annals of the New York Academy of Sciences 185:531–49. [aSRV]CrossRefGoogle ScholarPubMed
Hoffer, J. A. & Andreassen, S. (1981) Limitations in the servo-regulation of soleus muscle stiffness in premammillary cats. Muscle Receptors & Movement 308:311–24. [aAMS]CrossRefGoogle Scholar
Hofmann, M., Spano, P. F., Trabucchi, M. & Kumakura, K. (1977) Guanylate cyclase activity in various rat brain areas. Journal of Neurochemistry 29:395–96. [aSRV]Google ScholarPubMed
Hogan, N. (1990) Mechanical impedance of single- and multi-articular systems. In: Multiple muscle systems: Biomechanics and movement organization, ed. Winters, J. M. & Woo, S. L.. Springer-Verlag. [arAMS]Google Scholar
Hogan, N. & Flash, T. (1987) Moving gracefully: Quantitative theories of motor coordination. Trends in Neuroscience 10:170–74. [aAMS]CrossRefGoogle Scholar
Hollman, M., O'Shea-Greenfield, A., Rogers, S. W. & Heinemann, S. (1989) Cloning by functional expression of a member of the glutamate receptor family. Nature 342:643–48. [aFC]CrossRefGoogle Scholar
Holmes, G. (1917) The symptoms of acute cerebellar injuries due to gunshot injuries. Brain 40:461535. [aWTT]CrossRefGoogle Scholar
Holmes, G. (1922a) Clinical symptoms of cerebellar disease and their interpretation. The Croonian lectures 1. Lancet 1:1117–82. [aWTT]Google Scholar
Holmes, G. (1922b) Clinical symptoms of cerebellar disease and their interpretation. The Croonian lectures 2. Lancet 1:1237. [aWTT]Google Scholar
Holmes, G. (1922c) Clinical symptoms of cerebellar disease and their interpretation. The Croonian lectures 3. Lancet 2:5965. [aWTT]Google Scholar
Holmes, G. (1922d) Clinical symptoms of cerebellar disease and their interpretation. The Croonian lectures 4. Lancet 2:111–15. [aWTT]Google Scholar
Holmes, G. (1939) The cerebellum of man. Brain 62:130. [aAMS, aWTT, MAA]CrossRefGoogle Scholar
Hope, B. T., Michael, G. J., Knigge, K. M. & Vincent, S. R. (1991) Neuronal NADPH-diaphorase is a nitric oxide synthase. Proceedings of the National Academy of Sciences of the USA 88:2811–14. [aSRV]CrossRefGoogle ScholarPubMed
Hopfield, J. J. (1982) Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences of the USA 2554–58. [rJCII]CrossRefGoogle ScholarPubMed
Horak, F. B. (1990) Comparison of cerebellar and vestibular loss on scaling of postural responses. In: Disorders of posture and gait, ed. Brandt, T., Paulus, W., Bles, W., Dietrerich, M., Drafczyk, S. & Straube, A.. Stuttgart: Georg Thieme Verlag. [aWTT]Google Scholar
Horak, F. B. & Diener, H. C. (1993) Cerebellar control of postural scaling and central set in stance. Journal of Neurophysiology 72:479–93. [aAMS, aWTT, JMB, DT]CrossRefGoogle Scholar
Horak, F. B., Esselman, P. E., Anderson, M. E. & Lynch, M. K. (1984) The effects of movement velocity, mass displaced and task certainty on associated postural adjustments made by normal and hémiplégie individuals. Journal of Neurology, Neurosurgery, and Psychiatry 47:1020–28. [aAMS]CrossRefGoogle Scholar
Hore, J. (1993) Arm ataxia: Disorders in cerebellar-cortical function. Biomedicai Research 14(suppl. l):2326. [JH]Google Scholar
Hore, J. & Flament, D. (1988) Changes in motor cortex neural discharge associated with the development of cerebellar limb ataxia. Journal of Neurophysiology 60:12851302. [JH]CrossRefGoogle ScholarPubMed
Hore, J., Wild, B. & Diener, H.-C. (1991) Cerebellar dysmetria at the elbow, wrist and fingers. Journal of Neurophysiology 65:563–71. [JH, FS]CrossRefGoogle Scholar
Horn, A. K. E. & Hoffmann, K. P. (1987) Combined GABA immunocytochemistry TMB/HRP histochemistry of pretecto nuclei projecting to the inferior olive in rats, cats, and monkeys. Brain Research 409:135–38. [aJIS]CrossRefGoogle Scholar
Horn, R. & Marty, A. (1988) Muscarinic activation of ionic currents measured by a new whole-cell recording method. Journal of Cenerai Physiology 92:145159. [aDJL]CrossRefGoogle ScholarPubMed
Houk, J. C. (1989) Cooperative control of limb movements by the motor cortex, brainstem and cerebellum. In: Modeh of brain function, ed. Cotterill, R. M. J.. Cambridge University Press. [aJCH]Google Scholar
Houk, J. C. (1990) Role of cerebellum in classical conditioning. Society for Neuroscience Abstracts 16:474. [aJCH]Google Scholar
Houk, J. C. (1992) Learning in modular networks. In: Proceedings of the 7th Yale workshop on adaptive and learning systems, ed. Narendra, K. S.. Center for Systems Science. [aJCH]Google Scholar
Houk, J. C., Adams, J. L. & Bario, A. G. (1995) A model of how the basal ganglia generates and uses neural signals that predict reinforcement. In: Models of Information processing in the basal ganglia, ed. Houk, J. C., Davis, J. L. & Beiser, D. G.. MIT Press. [aJCH, JCH]Google Scholar
Houk, J. C. & Barto, A. G. (1992) Distributed sensorimotor learning. In: Tutorials in motor behavior 2, ed. Stelmach, G. E. & Requin, J.. Elsevier. [arJCH, aMS, PD, JCH]Google Scholar
Houk, J. C., Galiana, H. L. & Guitton, D. (1992) Cooperative control of gaze by the superior colliculus, brainstem and cerebellum. In: Tutorials in motor behavior 2, ed. Stelmach, G. E. & Requin, J.. Elsevier. [arJCH, PD]Google Scholar
Houk, J. C. & Gibson, A. R. (1987) Sensorimotor processing through the cerebellum. In: New concepts in cerebellar neurobiology, ed. King, J. S.. Liss, Alan R.. [aJCH]Google Scholar
Houk, J. C., Keifer, J. & Barto, A. G. (1993) Distributed motor commands in the limb premotor network. Trends in Neuroscience 16:2733. [arJCH, PD, JCH]CrossRefGoogle ScholarPubMed
Houk, J. C., Singh, S. P., Fisher, C. & Barto, A. G. (1990) An adaptive sensorimotor network inspired by the anatomy and physiology of the cerebellum. In: Neural networks for control, ed. Miller, W. T., Sutton, R. S. & Werbos, P. J.. MIT Press. [arJCH, PD]Google Scholar
Houk, J. C. & Rymer, W. Z. (1981) Neural control of length and tension. In: Handbook of physiology: vol. 2. The nervous system: pt. 1. Motor control, ed. Brookhardt, J. M. & Mountcastle, V. B.. American Physiological Society. [aAMS, MD, CG]Google Scholar
Houk, J. C. & Wise, S. P. (1995) Distributed modular architectures linking basal ganglia, cerebellum and cerebral cortex: Their role in planning and controlling action. Cerebral Cortex 5:95110. [aJCH]CrossRefGoogle ScholarPubMed
Huang, P. L., Dawson, T. M., Bredt, D. S., Snyder, S. H. & Fishman, M. C. (1993) Targeted disruption of the neuronal nitric oxide synthase gene. Cell 75:1273–86. [TH, rSRV]CrossRefGoogle ScholarPubMed
Hudson, B. D., Valcana, T., Bean, G. & Timiras, P. S. (1976) Glutamic acid: A strong candidate as the neurotransmitter of cerebellar granule cell. Neurochemical Research 1:7382. [aFC]CrossRefGoogle Scholar
Hufschmidt, H. J. & Hufschmidt, T. (1954) Antagonist inhibition as the earliest sign of a sensory-motor reaction. Nature 174:607. [rAMS]CrossRefGoogle ScholarPubMed
Hultborn, H. & Illert, M. (1991) How is motor behavior reflected in the organization of spinal systems? In: Motor control: Concepts and issues, ed. Humphrey, D. R. & Freund, H.-J.. Wiley. [rAMS]Google Scholar
Hultborn, H., Lindstrom, S. & Wigstrom, H. (1979) On the function of recurrent inhibition in the spinal cord. Experimental Brain Research 37:399403. [rAMS]CrossRefGoogle ScholarPubMed
Humphrey, D. R., Gold, R. & Reed, D. J. (1984) Sizes, laminar and topographic origins of cortical projections to the major divisions of the red nucleus in the monkey. Journal of Comparative Neurology 225:7594. [JDS]CrossRefGoogle Scholar
Humphrey, D. R. or Reed, D. J. (1983) Separate cortical systems for control of joint movement and joint stiffness: Reciprocal activation and co-activation of antagonist muscles. In: Motor control in health and disease, ed. Desmedt, J. E.. Raven. [aAMS]Google Scholar
Hunter, I. W. & Kearney, R. E. (1982) Dynamics of human ankle stiffness: Variation with mean ankle torque. Journal of Biomechanics 15:747–52. [aAMS]CrossRefGoogle ScholarPubMed
Ignarro, L. J., Ballot, B. & Wood, K. S. (1984) Regulation of soluble guanylate cyclase activity by porphyrins and metalloporphyrins. Journal of Biological Chemistry 259:6201–7. [DO]CrossRefGoogle ScholarPubMed
Ikeda, M., Monta, I., Murota, S.-L., Seldguchi, F., Yuasa, T. & Miyatake, T. (1993) Cerebellar nitric oxide synthase activity is reduced in nervous and Purkinje cell degeneration mutants but not in climbing fiber-Iesioned mice. Neuroscience Letters 155:148–50. [arSRV]CrossRefGoogle Scholar
Inhoff, A. W., Diener, H. C., Rafal, R. D. & Ivry, R. B. (1989) The role of cerebellar structures in the execution of serial movements. Brain 112:565–81. [aAMS, aWTT]CrossRefGoogle ScholarPubMed
Inoue, M., Oomura, Y., Yakushiji, T. & Akaike, N. (1986) Intracellular calcium ions decrease the affinity of the GABA receptor. Nature 324:156–58. [aMKan]CrossRefGoogle ScholarPubMed
Iriki, A., Pavlides, C., Keller, A. & Asanuma, H. (1989) Long-term potentiation in the motor cortex. Science 245:1385–87. [aMKan]CrossRefGoogle ScholarPubMed
Isaac, J. T. R., Nicoli, R. A. & Malenka, R. C. (1995) Evidence for silent synapses: Implications for the expression of LTP. Neuron 15:427–34. [MB]CrossRefGoogle ScholarPubMed
Isaacson, J. S. & Nicoll, R. A. (1991) Aniracetam reduces glutamate receptor desensitization and slows the decay of fast excitatory synaptic currents in the hippocampus. Proceedings oftlxe National Academy of Sciences of the USA 88:10936–40. [aFC]CrossRefGoogle ScholarPubMed
Ishikawa, J., Kawaguchi, S. & Rowe, M. J. (1972) Actions of afferent impulses from muscle receptors on cerebellar Purldnje cells: 2. Responses to muscle contraction. Effects mediated via the climbing fiber pathway. Experimental Brain Research 16:104–14. [aJIS]CrossRefGoogle Scholar
Ito, M. (1969) Neurons of cerebellar nuclei. In: The interneuron, ed. Brazier, M.A.B.. UCLA Forum. [aJCH]Google Scholar
Ito, M. (1970) Neurophysiological aspects of the cerebellar motor control system. International Journal of Neurology 7:162–76. [aJCH], aJISGoogle ScholarPubMed
Ito, M. (1972) Neural design of the cerebellar motor control system. Brain Research 40:8184. [aJIS, aWTT]CrossRefGoogle ScholarPubMed
Ito, M. (1982) Cerebellar control of the vestibulo-ocular reflex-around the flocculus hypothesis. Annual Review of Neuroscience 5:275–96. [aJIS]CrossRefGoogle ScholarPubMed
Ito, M. (1984) The cerebellum and neural control. Raven. [aFC, aJCH, aMKan, aAMS, aJIS. aWTT, PD. EDS]Google Scholar
Ito, M. (1987) Characterization of synaptic plasticity in cerebellar and cerebral neocortex. In: The neural and molecular bases of learning, ed. Changeux, J. P. & Nonishi, M.. Wiley. [aFC]Google Scholar
Ito, M. (1989) Long-term depression. Annual Review in Neuroscience 12:85102. [aFC, aJCH, aMKan. aJIS. aWTT, EDS, RFT]CrossRefGoogle ScholarPubMed
Ito, M. (1990) A new physiological concept on the cerebellum. Revue Neurologique 10:564–69. [aWTT]Google Scholar
Ito, M. (1991) The cellular basis of cerebellar plasticity. Current Opinion in Neurobiology 1:616–20. [aDJL]CrossRefGoogle ScholarPubMed
Ito, M. (1993) Movement and thought: Identical control mechanism by the cerebellum. Trends in Neurosciences 16:448–50. [aJCH, MKaw]CrossRefGoogle ScholarPubMed
Ito, M., Jastreboff, P. J. & Miyashita, Y. (1982b) Specific effects of unilateral lesions in the flocculus upon eye movements in albino rabbits. Experimental Brain Research 45:233–42. [aJIS]Google ScholarPubMed
Ito, M. & Karachot, L. (1990) Messengers mediating long-term desensitization in cerebellar Purkinje cells. NeuroReport 1:129–32. [aFC, aMKan, arDJL, aSRV, DO]Google ScholarPubMed
Ito, M. & Karachot, L. (1989) Long-term desensitization of quisqualate-specific glutamate receptors in Purldnje cells investigated with wedge recording from rat cerebellar slices. Neuroscience Research 7:168–71. [aWTT]CrossRefGoogle ScholarPubMed
Ito, M. & Karachot, L. (1992) Protein kinases and phosphatase inhibitors mediating long-term desensitization of glutamate receptors in cerebellar Purldnje cells. Neuroscience Research 14:2738. [aFC, aDJL, NAH]CrossRefGoogle ScholarPubMed
Ito, M., Kawai, N. & Udo, M. (1968) The origin of cerebellar-induced inhibition of Deiters neurones: 3. Localization of the inhibitory zone. Experimental Brain Research 4:310–20. [aAMS]CrossRefGoogle ScholarPubMed
Ito, M., Nisimaru, N. & Yamamoto, M. (1977) Specific patterns of neuronal connections involved in the control of the rabbit's vestibulo-ocular reflexes by the cerebellar flocculus. Journal of Physiology (London) 265:833–54. [aJIS]CrossRefGoogle ScholarPubMed
Ito, M., Obata, K. & Ochi, R. (1966) The origin of cerebellar-induced inhibition of Deiters' neurons: 2. Temporal correlation between the trans-synaptic activation of Purkinje cells and the inhibition of Deiters neurons. Experimental Brain Research 2:350–64. [aAMS]CrossRefGoogle Scholar
Ito, M., Sakurai, M. & Tongroach, P. (1982) Climbing fibre induced depression of both mossy fiber responsiveness and glutamate sensitivity of cerebellar Purkinje cells. Journal of Physiology (London) 324:113–34. [aFC, aDJL, aMKan, aJIS, aWTT, MD. RFT]CrossRefGoogle ScholarPubMed
Ito, M., Shiida, T., Yagi, N. & Yamamoto, M. (1974) The cerebellar modification of rabbit's horizontal vestibulo-ocular reflex induced by sustained head rotation combined with visual stimulation. Proceedings of the Japan Academy 50:8589. [aWTT]CrossRefGoogle Scholar
Ito, M. & Simpson, J. (1971) Discharges in Purkinje cell axons during climbing fibre activation. Brain Research 31:215–19. [aJIS]CrossRefGoogle Scholar
Ito, M., Tanabe, S., Kohda, A. & Sugiyama, H. (1990) Allosteric potentiation of quisqualate receptors by a nootropic drug aniracetam. Journal of Physiology (London) 424:533–43. [aFC]CrossRefGoogle ScholarPubMed
Ito, M. & Yoshida, M. (1966) The origin of cerebellar-induced inhibition of Deiters' neurons: 1. Monosynaptic initiation of the inhibitory post synaptic potential. Experimental Brain Research 2:330–49. [aAMS]CrossRefGoogle Scholar
Ivry, R. D. & Diener, H. C. (1991) Impaired velocity perception in patients with lesions of the cerebellum. Journal of Cognitive Neuroscience 3:355–66. [aAMS]CrossRefGoogle ScholarPubMed
Ivry, R. B. & Keele, S. W. (1989) Timing functions of the cerebellum. Journal of Cognitive Neuwscience 1:136–52. [aAMS, aWTT]CrossRefGoogle ScholarPubMed
Ivry, R. B., Keele, S. W. & Diener, H. C. (1988) Dissociation of the lateral and medial cerebellum in movement timing and movement execution. Experimental Brain Research 73:167–80. [aAMS]CrossRefGoogle ScholarPubMed
Jackson, J. H. (1890) A study of convulsions. In: Selected writings of John Hughlings Jackson (1932), ed. Taylor, J.. Basic. [aWTT]Google Scholar
Jaeger, D. & Bower, J. M. (1994) Prolonged responses in rat cerebellar Purkinje cells following activation of the granule cell layer: An intracellular in vitro and in vivo investigation. Experimental Brain Research 100:200–14. [JMB, DJ]CrossRefGoogle ScholarPubMed
Jahnsen, H. (1986) Extracellular activation and membrane conductances of neurones in the guinea-pig deep cerebellar nuclei in vitro. Journal of Physiology (London) 372:149–68. [aJIS]CrossRefGoogle ScholarPubMed
Jakab, R. L. & Hàmori, J. (1988) Quantitative morphology and synaptology of cerebellar glomeruli in the rat. Anatomy and Embryology 179:8188. [FS]CrossRefGoogle ScholarPubMed
Jami, L. (1992) Golgi tendon organs in mammalians skeletal muscle: Functional properties and central actions. Physiological Reviews 72:623–66. [MD]CrossRefGoogle ScholarPubMed
Jankowska, E. & Roberts, W. J. (1972) An electrophysiological demonstration of the axonal projections of single spinal interneurones in the cat. Journal of Physiology (London) 222:597622. [rAMS]CrossRefGoogle ScholarPubMed
Jansen, J. & Brodai, A. (1954) Aspects of cerebellar anatomy. Oslo: Johan Grundt Tanum Forlag. [aJIS]Google Scholar
Jeannerod, M. (1981) Intersegmental coordination during reaching at natural visual objects. In: Attention and performance 9, ed. Long, J. & Baddeley, A.. Erlbaum. [PH]Google Scholar
Jeannerod, M. (1994) The representing brain: Neural correlates of motor intention and imagery. Behavioral and Brain Science 17:187201. [aWTT]CrossRefGoogle Scholar
Jenkins, I. H., Brooks, D. J., Nixon, P. D. & Frackowiak, R. S. J. (1994) Motor sequence learning: A study with positron emission tomography. Journal of Neuwscience 14:3775–90. [aWTT, DT, JDS]Google ScholarPubMed
Jeromin, A., Huganir, R., & Linden, D. J. (1996) Suppression of the glutamate receptor delta-2 subunit produces a specific impairment in cerebellar long-term depression. Journal of Neurojilisiology, in press. [rDJL]CrossRefGoogle Scholar
Jongen, H. A. H., Denier Van Der Con, J. J. & Gielen, C. C. A. M. (1989) Inhomogeneous activation of motoneurone pools as revealed by co-contraction of antagonistic human arm muscles. Experimental Brain Research 75:555–62. [aAMS]CrossRefGoogle ScholarPubMed
Kalaska, J. F., Cohen, D. A. D., Prud'homme, M. & Hyde, M. L. (1990) Parietal area 5 neuronal activity encodes movement kinematics, not movement dynamics. Experimental Brain Research 80:351–64. [MKaw]CrossRefGoogle Scholar
Kandel, E. & Schwartz, J. (1982) Molecular biology of learning: Modulation of transmitter release. Science 218:433–43. [aMKan]CrossRefGoogle ScholarPubMed
Kano, M. (1995) Plasticity of inhibitory synapses in the brain: A possible memory mechanism that has been overlooked. Neuwscience Reseawh 21:177–82. [aMKan]CrossRefGoogle Scholar
Kano, M. Hashimoto, K., Chen, C., Abeliovich, A., Aiba, A., Kurihara, H., Watanabe, M., Inoue, Y. L. & Tonegawa, S. (1995) Impaired synapse elimination during cerebellar development in PKCγ mutant mice. Cell 83:1223–31. [rMKan, rDJL]CrossRefGoogle Scholar
Kano, M. & Kato, M. (1987) Quisqualate receptors are specifically involved in cerebellar synaptic plasticity. Nature 325:276–79. [aFC, aMKan, aDJL]CrossRefGoogle ScholarPubMed
Kano, M. & Kato, M. (1988) Mode of induction of long-term depression at parallel fibre-Purkinje cell synapses in rabbit cerebellar cortex. Neuroscience Research 5:544–56. [aDJL, aJIS]CrossRefGoogle ScholarPubMed
Kano, M., Kano, M.-S., Kusunoki, M. & Maekawa, K. (1990a) Nature of optokinetic response and zonal organization of climbing fiber afferents in the vestibulocerebellum of the pigmented rabbit: 2. The nodulus. Experimental Brain Research 80:238–51. [aJIS]CrossRefGoogle ScholarPubMed
Kano, M., Kano, M.-S. & Maekawa, K., (1991) Optokinetic response of simple spikes of Purkinje cells in the cerebellar flocculus and nodulus of the pigmented rabbit. Experimental Brain Research 87:484–96. [rJIS]CrossRefGoogle ScholarPubMed
Kano, M., & Konnerth, A. (1992a) Potentiation of GABA-mediated currents by cAMP-dependent protein kinase. NeuroReport 3:563–66. [aMKan]CrossRefGoogle ScholarPubMed
Kano, M., & Konnerth, A. (1992b) Cerebellar slices for patch clamp recording. In: Practical electrophysiological methods, ed. Kettenmann, H. & Grantyn, R.. Wiley-Liss. [aMKan]Google Scholar
Kano, M., Rexhausen, U., Dreessen, J. & Konnerth, A. (1992) Synaptic excitation produces a long-lasting rebound potentiation of inhibitory synaptic signals in cerebellar Purkinje cells. Nature (London) 356:601–4. [aMKan, aJIS]CrossRefGoogle ScholarPubMed
Kano, M.-S., Kano, M. & Maekawa, K. (1990) Receptive field organization of climbing fiber afferents responding to optokinetic stimulation in the cerebellar nodulus and flocculus of the pigmented rabbit. Experimental Brain Research 82:499512. [aJIS]CrossRefGoogle ScholarPubMed
Kapoula, Z. & Robinson, D. A. (1986) Saccadic undershoot is not inevitable: Saccades can be accurate. Vision Research 26:735–43. [HB]CrossRefGoogle ScholarPubMed
Karachot, L., Kado, R. T. & Ito, M. (1994) Stimulus parameters for induction of long-term depression in in vitro rat Purkinje cells. Neuroscience Research 21:161–68. [EDS, rJIS]CrossRefGoogle ScholarPubMed
Kasai, H. & Petersen, O. H. (1994) Spatial dynamics of second messengers: IP3 and cAMP as long-range and associative messengers. Trench in Neurosciences 17:95101.CrossRefGoogle Scholar
Kashiwabuchi, N., Ikeda, K., Araki,