Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-13T17:18:17.157Z Has data issue: false hasContentIssue false

Does the nervous system use equilibrium-point control to guide single and multiple joint movements?

Published online by Cambridge University Press:  19 May 2011

E. Bizzi
Affiliation:
Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, Electronic mail: emilio@wheaties.ai.mit.edu
N. Hogan
Affiliation:
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
F. A. Mussa-Ivaldi
Affiliation:
Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, Electronic mail: emilio@wheaties.ai.mit.edu
S. Giszter
Affiliation:
Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, Electronic mail: emilio@wheaties.ai.mit.edu

Abstract

The hypothesis that the central nervous system (CNS) generates movement as a shift of the limb's equilibrium posture has been corroborated experimentally in studies involving single- and multijoint motions. Posture may be controlled through the choice of muscle length-tension curve that set agonist-antagonist torque-angle curves determining an equilibrium position for the limb and the stiffness about the joints. Arm trajectories seem to be generated through a control signal defining a series of equilibrium postures. The equilibrium-point hypothesis drastically simplifies the requisite computations for multijoint movements and mechanical interactions with complex dynamic objects in the environment. Because the neuromuscular system is springlike, the instantaneous difference between the arm's actual position and the equilibrium position specified by the neural activity can generate the requisite torques, avoiding the complex “inverse dynamic” problem of computing the torques at the joints. The hypothesis provides a simple, unified description of posture and movement as well as contact control task performance, in which the limb must exert force stably and do work on objects in the environment. The latter is a surprisingly difficult problem, as robotic experience has shown. The prior evidence for the hypothesis came mainly from psychophysical and behavioral experiments. Our recent work has shown that microstimulation of the frog spinal cord's premotoneural network produces leg movements to various positions in the frog's motor space. The hypothesis can now be investigated in the neurophysiological machinery of the spinal cord.

Type
Target Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, B. C. & Aubert, X. M. (1952) The force exerted by active striated muscle during and after change of length. Journal of Physiology (London) 117:7786. [GCA]Google Scholar
Abdusamatov, R. M., Adamovich, S. V., Berkinblit, M. B., Chernavsky, A. V. & Feldman, A. G. (1988) Rapid one-joint movements: A qualitative model and its experimental verification. In: Stance and motion: Facts and concepts, ed. Gurfinkel, V. S., loffe, M. E., Massion, J. & Roll, J. P.. Plenum. [SVA]Google Scholar
Abdusamatov, R. M., Adamovich, S. V. & Feldman, A. G. (1987) A model for one-joint motor control in man. In: Motor control, ed. Gantchev, G. N., Dimitrov, B. & Gatev, P.. Plenum. [SVA]Google Scholar
Abeles, M. (1991) Corticonics. Neural circuits of the cerebral cortex. Cambridge University Press. [VB]CrossRefGoogle Scholar
Abend, W., Bizzi, E. & Morasso, P. (1982) Human arm trajectory formation. Brain 105:331–48. [aSCG, JDe]Google Scholar
Abernethy, B. & Sparrow, W. A. (1992) The rise and fall of dominant paradigms in motor behavior research. In: Approaches to the study of motor control and learning, ed. Summers, J. J.. North-Holland. [JJS]Google Scholar
Abraham, L. D. & Loeb, G. E. (1985) The distal musculature of the cat: Patterns of normal use. Experimental Brain Research 58:580–93. [CAP]CrossRefGoogle ScholarPubMed
Abraham, L., Potegal, M. & Miller, S. (1983) Evidence for a caudate nucleus involvement in an egocentric spatial task. Physiological Psychology 11:1117. [DI]Google Scholar
Adamovich, S. V., Burlachkova, N. I. & Feldman, A. G. (1984) Wave nature of the central process of formation of the trajectories of change in the joint angle in man. Biophysics 29:130–34. [SVA]Google Scholar
Adamovich, S. V. & Feldman, A. G. (1984) Model of the central regulation of the parameters of motor trajectories. Biophysics 29:338–42. [SVA, DJO]Google Scholar
Adamovich, S. V. & Feldman, A. G. (1989) The prerequisites for one-joint motor control theories. Behavioral and Brain Sciences 12:210–11. [MLL, SVA]CrossRefGoogle Scholar
Ahissar, M., Ahissar, E., Bergman, H. & Vaadia, E. (1992) Encoding of sound-source location and movement: Activity of single neurons and interactions between adjacent neurons in the monkey auditory cortex. Journal of Neurophysiology 67:203–15. [APo]CrossRefGoogle ScholarPubMed
Albin, R. L., Young, A. B. & Penney, J. B. (1989) The functional anatomy of basal ganglia disorders. Trends in Neuroscience 12:366–75. [aGEA]CrossRefGoogle ScholarPubMed
Albus, J. S. (1971) A theory of cerebellar function. Mathematical Bioscience 10:2561. [PFCG, RFT]CrossRefGoogle Scholar
Alexander, G. E. (1987) Selective neuronal discharge in monkey putamen reflects intended direction of planned limb movements. Experimental Brain Research 67:623–34. [aGEA]CrossRefGoogle ScholarPubMed
Alexander, G. E. (1992) For effective sensorimotor processing must there be explicit representations and reconciliation of differing frames of reference? Behavioral and Brain Sciences 15:323–24. [MF]Google Scholar
Alexander, G. E. & Crutcher, M. D. (1990a) Functional architecture of basal ganglia circuits: Neural substrates of parallel processing. Trends in Neuroscience 13:266–71. [aGEA, JMF]Google Scholar
Alexander, G. E. & Crutcher, M. D. (1990b) Preparation for movement: Neural representations of intended direction in three motor areas of the monkey. Journal of Neurophysiology 64:133–50. [aGEA]CrossRefGoogle ScholarPubMed
Alexander, G. E. & Crutcher, M. D. (1990c) Neural representations of the target (goal) of visually guided arm movements in three motor areas of the monkey. Journal of Neurophysiology 64:164–78. [aGEA, aEEF]CrossRefGoogle ScholarPubMed
Alexander, G. E., Crutcher, M. D. & DeLong, M. R. (1990) Basal gangliathalamocortical circuits: Parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. Progress in Brain Research 85:119–46. [AB]CrossRefGoogle ScholarPubMed
Alexander, G. E. & DeLong, M. R. (1985) Microstimulation of the primate neostriatum. II. Somatotopic organization of striatal microexcitable zones and their relation to neuronal response properties. Journal of Neurophysiology 53:1417–30. [aGEA]CrossRefGoogle ScholarPubMed
Alexander, G. E. & Fuster, J. (1973) Effects of coding prefrontal cortex on cell firing in the nucleus medialis dorsalis. Brain Research 61:93105. [aEEF]Google Scholar
Al-Falahe, N. A., Nagaoka, M. & Vallbo, Å B. (1990) Response profiles of human muscle afferents during active finger movements. Brain 113:325–46. [aSCG]Google Scholar
Al-Falahe, N. A. & Vallbo, Å B. (1988) Role of the human fusimotor system in a motor adaptation task. Journal of Physiology (London) 401:7795. [arSCG]CrossRefGoogle Scholar
Allen, G. I. & Tsukahara, N. (1974) Cerebellar communication systems. Physiological Reviews 54:9571006. [aGEA, aJRB, cJFS]CrossRefGoogle ScholarPubMed
Allum, J. H. J. (1975) Responses to load disturbances in human shoulder muscles: The hypothesis that one component is a pulse test information signal. Experimental Brain Research 22:307–26. [aEB, MLL]CrossRefGoogle ScholarPubMed
Allum, J. H. J. & Mauritz, K.-H. (1984) Compensation for intrinsic muscle stiffness by short-latency reflexes in human triceps surae muscles. Journal of Neurophysiology 52:797818. [TRN]Google Scholar
Aloisi, A. M., Carli, G. & Rossi, A. (1988) Response of hip joint afferent fibers to pressure and vibration in the cat. Neuroscience Letters 90:130–34. [aSCG]CrossRefGoogle ScholarPubMed
Alstermark, B., Johannisson, T. & Lundberg, A. (1986) The inhibitory feedback pathway from the forelimb to C3-C4 propriospinal neurones investigated with natural stimulation. Neuroscience Research 3:451–56. [DBur]CrossRefGoogle ScholarPubMed
Alstermark, B. & Kümmel, H. (1990) Transneuronal transport of wheat germ agglutinin conjugated horseradish peroxidase in last-order spinal interneurones projecting to acromio- and spinodeltoideus motoneurones in the cat. 2. Differential labelling of interneurones depending on movement type. Experimental Brain Research 80:96103. [AL]CrossRefGoogle ScholarPubMed
Alstermark, B., Kümmel, H., Pinter, M. & Tantisira, B. (1990) Integration in descending motor pathways controlling the forelimb in the cat. 17. Axonal projection and termination of C3-C4 propriospinal neurones in the C6-Th1 segments. Experimental Brain Research 81:447–61. [AL]CrossRefGoogle ScholarPubMed
Alstermark, B., Lindström, S., Lundberg, A. & Sybirska, E. (1981a) Integration in descending motor pathways controlling the forelimb in the cat. 8. Ascending projection to the lateral reticular nucleus from C3–C4 propriospinal neurones also projecting to forelimb motoneurones. Experimental Brain Research 42:282–98. [AL]Google Scholar
Alstermark, B., Lundberg, A., Norrsell, U. & Sybirska, E. (1981b) Integration in decending motor pathways controlling the forelimb in the cat. 9. Differential behavioural defects after spinal cord lesions interrupting defined pathways from higher centres to motoneurones. Experimental Brain Research 42:299318. [aSCG, DBur, cSCG, AL]Google Scholar
Alstermark, B., Lundberg, A., Pettersson, L.-G., Tantisira, B. & Walkowska, M. (1987) Motor recovery after serial spinal cord lesions of defined descending pathways in cats. Neuroscience Research 5:6873. [AL]Google Scholar
Alstermark, B., Lundberg, A. & Sasaki, S. (1984) Integration in descending motor pathways controlling the forelimb in the cat. II. Inhibitory pathways from higher motor centres and forelimb afferents to C3–C4 propriospinal neurones. Experimental Brain Research 56:293307. [rEEF, DBur, AL]Google Scholar
Alstermark, B. & Sasaki, S. (1986) Integration in descending motor pathways controlling the forelimb in the cat. 14. Differential control of fast and slow motoneurones from C3–C4 propriospinal neurones. Experimental Brain Research 63:530–42. [AL]CrossRefGoogle ScholarPubMed
An, C. H., Atkeson, C. G. & Hollerbach, J. M. (1988) Model-based control of a robot manipulator. MIT Press. [aGEA]Google Scholar
An, K. N., Kaufman, K. R. & Chao, E. Y. S. (1989) Physiological considerations of muscle force through the elbow joint. Journal of Biomechanics 22:1249–56. [SVA]Google Scholar
Anastasio, T. J. & Robinson, D. A. (1989) The distributed representation of vestibulo-ocular signals by brain-stem neurons. Biological Cybernetics 61:7988. [aDAR, MF]CrossRefGoogle ScholarPubMed
Anastasio, T. J. & Robinson, D. A. (1990a) Distributed parallel processing in the vertical vestibulo-ocular reflex: Learning networks compared to tensor theory. Biological Cybernetics 63:161–67. [arDAR, RE]Google Scholar
Anastasio, T. J. & Robinson, D. A. (1990b) Distributed parallel processing in the vestibulo-oculomotor system. Neural Computation 1:230–41. [aGEA, rDAR]CrossRefGoogle Scholar
Andén, N. E., Jukes, M. G. M. & Lundberg, A. (1967) The effect of DOPA on the spinal cord. I. Influence on transmission from primary afferents. Acta Physiologica Scandinavica 67:373–86. [aDAM]CrossRefGoogle Scholar
Andersen, R. A. (1987) Inferior parietal lobule function in spatial perception and visuomotor integration. In: Handbook of physiology, ed. Plum, F. & Mountcastle, V. B.. American Physiological Society. [aJFS]Google Scholar
Andersen, R. A. (1989) Visual and eye movement functions of posterior parietal cortex. Annual Review of Neuroscience 12:377404. [aJFS]Google Scholar
Andersen, R. A., Asanuma, C. & Cowan, W. M. (1985a) Callosal and prefrontal associational projecting cell populations in area 7a of the macaque monkey: A study using retrogradely transported fluorescent dyes. Journal of Comparative Neurology 232:443–55. [aJFS]CrossRefGoogle ScholarPubMed
Andersen, R. A., Asanuma, C. Essick, G. & Siegel, R. M. (1990a) Corticocortical connections of anatomically and physiologically defined subdivisions of inferior parietal lobule. Journal of Comparative Neurology 296:65113. [aJFS]Google Scholar
Andersen, R. A., Bracewell, R. M., Barash, S., Gnadt, J. W. & Fogassi, L. (1990b) Eye position effects on visual, memory, and saccade-related activity in areas LIP and 7a of the macaque. Journal of Neuroscience 10:1176–96. [arJFS, RAA, CLC, JWG, APo]Google Scholar
Andersen, R. A., Essick, G. & Siegel, R. M. (1985b) Encoding of spatial location by posterior parietal neurons. Science 230:456–58. [aEB, aJFS, RAA, JWG]CrossRefGoogle ScholarPubMed
Andersen, R. A., Essick, G. & Siegel, R. M. (1987) Neurons of area 7 activated by both visual stimuli and oculomotor behavior. Experimental Brain Research 67:316–22. [aDAR]CrossRefGoogle ScholarPubMed
Andersen, R. A. & Gnadt, J. W. (1989) Posterior parietal cortex. In: The neurobiology of saccadic eye movements, ed. Wurtz, R. H. & Goldberg, M. E.. Elsevier. [JWG]Google Scholar
Andersen, R. A. & Mountcastle, V. B. (1983) The influence of the angle of gaze upon the excitability of light sensitive neurones in the posterior parietal cortex. Journal of Neuroscience 3:532–48. [aJFS]Google Scholar
Andersen, R. A. & Zipser, D. (1988) The role of the posterior parietal cortex in coordinate transformations for visual-motor integration. Canadian Journal of Physiology and Pharmacology 66:488501. [MF]CrossRefGoogle ScholarPubMed
Anderson, M. E. (1977) Segmental reflex inputs to motoneurons innervating dorsal neck musculature in the cat. Experimental Brain Research 28:175–87. [GEL]Google ScholarPubMed
Andrews, C. J. (1973) Influence of dystonia on the response to long-term L-Dopa therapy in Parkinson's disease. Journal of Neurology, Neurosurgery & Psychiatry 36:630–36. [GMa]Google Scholar
Andrews, J. R. & Hogan, N. (1983) Impedance control as a framework for implementing obstacle avoidance in a manipulator. In: Control of manufacturing and robotic systems, ed. Hardt, D. E. & Book, W. J.. ASME. [rEB]Google Scholar
Angel, R. W. & Malenka, R. C. (1982) Velocity-dependent suppression of cutaneous sensitivity during movement. Experimental Neurology 77:266–74. [aSCG]Google Scholar
Aniss, A. M., Diener, H.-C., Hore, J., Burke, D. & Gandevia, S. C. (1990a) Reflex activation of muscle spindles in human pretibial muscles during standing. Journal of Neurophysiology 64:671–79. [arSCG]CrossRefGoogle ScholarPubMed
Aniss, A. M., Diener, H.-C., Hore, J., Gandevia, S. C. & Burke, D. (1990b) Behavior of human muscle receptors when reliant on proprioceptive feedback during standing. Journal of Neurophysiology 64:661–70. [arSCG]Google Scholar
Aniss, A. M., Gandevia, S. C. & Burke, D. (1988a) Reflex changes in muscle spindle discharge during a voluntary contraction. Journal of Neurophysiology 59:908–21. [aSCG]Google Scholar
Aniss, A. M., Gandevia, S. C. & Milne, R. J. (1988b) Changes in perceived heaviness and motor commands produced by cutaneous reflexes in man. Journal of Physiology (London) 397:113–26. [aSCG]Google Scholar
Appenteng, K. & Prochazka, A. (1984) Tendon organ firing during active muscle lengthening in awake, normally behaving cats. Journal of Physiology (London) 353:8192. [aSCG]Google Scholar
Araki, T., Eccles, J. C. & Ito, M. (1960) Correlation of the inhibitory postsynaptic potential of motoneurones with the latency and time course of inhibition of monosynaptic reflexes. Journal of Physiology (London) 154:354–77. [DBul]Google Scholar
Arbib, M. A. (1981) Perceptual structures and distributed motor control. In: Handbook of physiology: Nervous system, vol. 2, ed. Brooks, V. B.. American Physiological Society. [CIC, JMF]Google Scholar
Arbib, M. A. (1987) Levels of modeling of mechanisms of visually guided behavior. Behavioral and Brain Sciences 10(3):407–65. [CIC]CrossRefGoogle Scholar
Arbib, M. A. (1990) Programs, schemas, and neural networks for control of hand movements: Beyond the RS framework. In: Attention and performance XIII. Motor representation and control, ed. Jeannerod, M.. Erlbaum. [aGEA]Google Scholar
Arbib, M. A. (1991) Interaction of multiple representations of space in the brain. In: The brain and space, ed. Paillard, J.. Oxford University Press. [aJFS]Google Scholar
Arkin, R. C. (1987) Towards cosmopolitan robots: Intelligent navigation in extended man-made environments. Technical report 87–80, Department of Computer and Information Science, University of Massachusetts. [CIC]Google Scholar
Arnold, D. B. & Robinson, D. A. (1991) A learning network model of the neural integrator of the oculomotor system. Biological Cybernetics 64:447–54. [arDAR]Google Scholar
Artim, J. & Bridgeman, B. (1989) The physiology of attention: Participation of cat striate cortex in behavioral choice. Psychological Research/Psychologische Forschung 50:223–28. [BB]Google Scholar
Asanuma, H. (1989) The motor cortex. Raven Press. [MEI]Google Scholar
Asanuma, C., Andersen, R. A. & Cowan, W. M. (1985) The thalamic relations of the caudal inferior parietal lobule and the lateral prefrontal cortex in monkeys: Divergent cortical projections from cell clusters in the medial pulvinar nucleus. Journal of Comparative Neurology 241:357–81. [aJFS]CrossRefGoogle ScholarPubMed
Asanuma, C., Thach, W. T. & Jones, E. G. (1983a) Brainstem and spinal projections of the deep cerebellar nuclei in the monkey, with observations on the brainstem projections of the dorsal column nuclei. Brain Research Reviews 5:299322. [aJRB]Google Scholar
Asanuma, C., Thach, W. T. & Jones, E. G. (1983b) Anatomical evidence for segregated focal groupings of efferent cells and their terminal ramifications in the cerebellothalamic pathway of the monkey. Brain Research Reviews 5:267–97. [aJRB]Google Scholar
Asanuma, C., Thach, W. T. & Jones, E. G. (1983c) Distribution of cerebellar terminations and their relation to other afferent terminations in the ventral lateral thalamic region of the monkey. Brain Research Reviews 5:237–65. [aJRB]Google Scholar
Asatryan, D. B. & Feldman, A. G. (1965) Functional tuning of the nervous system with control of movement or maintenance of a steady posture. I. Mechanographic analysis of the work of the joint or execution of a postural task. Biofizika 10:837–46 [English translation 925–35]. [GCA, SVA, AGF]Google Scholar
Ashford, J. A. W. & Fuster, J. M. (1985) Occipital and inferotemporal responses to visual signals in the monkey. Experimental Neurology 90:444–66. [JMF]Google Scholar
Astrom, K. J. & Wittenmark, B. (1989) Adaptive control. Addison-Wesley. [PDN]Google Scholar
Atkeson, C. G. (1989) Learning arm kinematics and dynamics. Annual Review of Neuroscience 12:157–83. [aGEA]CrossRefGoogle ScholarPubMed
Atkinson, R. C., Bower, G. H. & Crothers, E. J. (1965) An introduction to mathematical learning theory. Wiley. [HH]Google Scholar
Babinski, J. (1899) De l'asynergie cérébelleuse. Revue Neurologique 7:806–16. [AMS]Google Scholar
Baev, K. V. & Shimansky, Y. P. (1992) Principles of organization of neural systems controlling automatic movements in animals. Progress in Neurobiology 39:45112. [rJRB]Google Scholar
Baizer, J., Ungerleider, J. G. & Desimone, R. (1991) Organisation of visual inputs to inferior temporal and posterior parietal cortex in macaques. Journal of Neuroscience 11:168–90. [aJFS]Google Scholar
Balaban, C. D., Ito, M. & Watanabe, E. (1981) Demonstration of zonal projections from the cerebellar flocculus to vestibular nuclei in monkeys (Macaca fuscata). Neuroscience Letters 27:101–5. [NHB]Google Scholar
Baldissera, F., Cavallari, P., Fournier, E., Pierrot-Deseilligny, E. & Shindo, M. (1987) Evidence for mutual inhibition of opposite la interneurones in the human upper limb. Experimental Brain Research 66:106–14. [DBul]Google Scholar
Baldissera, F., Hultborn, H. & Illert, M. (1981) Integration in spinal neuronal systems. In: Handbook of physiology: The nervous system II, ed. Brookhart, J. M., Mountcastle, V. B., Brooks, V. B. & Geiger, S. R.. American Physiological Society. [aDAM, rEEF]Google Scholar
Baldissera, F. & Pierrot-Deseilligny, E. (1989) Facilitation of transmission in the pathway of non-monosynaptic la excitation to wrist flexor motoneurones at the onset of voluntary movement in man. Experimental Brain Research 74:437–39. [aSCG, AL]Google Scholar
Bamber, D. & van Santen, J. P. H. (1985) How many parameters can a model have and still be testable? Journal of Mathematical Psychology 29:443–73. [JGP]CrossRefGoogle Scholar
Bando, T., Yamamoto, N. & Tsukahara, N. (1984) Cortical neurons related to lens accommodation in posterior lateral suprasylvian area in cats. Journal of Neurophysiology 52:879–91. [JWG]Google Scholar
Bapi, R. S. & Levine, D. S. (1990) Networks modeling the involvement of the frontal cortex in performance of flexible motor sequences. Proceedings of the Twelfth Annual Conference of the Cognitive Science Society. Erlbaum. [DSL]Google Scholar
Baranyi, A. & Szente, M. B. (1987) Long-lasting potentiation of synaptic transmission requires postsynaptic modifications in the neocortex. Brain Research 423:378–84. [aGEA]CrossRefGoogle ScholarPubMed
Barash, S., Bracewell, R. M., Fogassi, L., Gnadt, J. W. & Andersen, R. A. (1991) Saccade related activity in the lateral intraparietal area. Journal of Neurophysiology 66:10951124. [aJFS, CLC]Google Scholar
Barbas, H. & Mesulam, H.-M. (1985) Cortical afferent input to principalis region of rhesus monkey. Neuroscience 15:617–37. [aJFS]Google Scholar
Barbeito, R. & Ono, M. (1979) Four methods for locating the egocentre. Behavioral Research Methods Instruments & Computers 11:3136. [aJFS]Google Scholar
Bard, C., Paillard, J., Lajoie, Y., Fleury, M., Teasdale, N., Forget, R. & Lamarre, Y. (1992) Role of afferent information in the timing of motor command: A comparative study with a deafferented patient. Neuropsychologia 30:201–6. [JP]Google Scholar
Barlow, H. B. (1980) Cortical function: A tentative theory. In: Neural mechanics of behaviour, ed. McFadden, D.. Springer. [aJFS]Google Scholar
Barrack, R. L., Skinner, H. B., Brunet, M. E. & Haddad, R. J. (1983a) Functional performance of the knee after intra-articular anesthesia. American Journal of Sports Medicine 11:258–61. [aSCG]Google Scholar
Barrack, R. L., Skinner, H. B., Cook, S. D. & Haddad, R. J. (1983b) Effects of articular disease and total knee arthroplasty on knee joint-position sense. Journal of Neurophysiology 50:684–87. [aSCG]CrossRefGoogle ScholarPubMed
Barraquand, J. & Latombe, J.-C. (1991) Robot motion planning: A distributed representation approach. International Journal of Robotics Research 10(6):628–49. [CIC]Google Scholar
Barto, A. G. & Sutton, R. S. (1981) Landmark learning, an illustration of associative search. Biological Cybernetics 42:18. [aJFS]Google Scholar
Batini, C. & Billard, J. M. (1985) Release of cerebellar inhibition by climbing fiber deafferentation. Experimental Brain Research 57:370–80. [AMS]Google Scholar
Baum, E. B. (1990) On learning a union of half spaces. Journal of Complexity 6:67101. [HB]Google Scholar
Baumann, T. K., Emonet-Dénand, F. & Hulliger, M. (1982) After-effects of fusimotor stimulation on spindle la afferents' dynamic sensitivity, revealed during slow movements. Brain Research 232:460–65. [aSCG]Google Scholar
Bauswein, E., Kolb, F. P., Leimbeck, B. & Rubia, F. J. (1983) Simple and complex spike activity in cerebellar Purkinje cells during active and passive movements in the awake monkey. Journal of Physiology (London) 339:379894. [JMB]Google Scholar
Baxendale, R. H. & Ferrell, W. R. (1981) The effect of knee joint afferent discharge on transmission in flexion reflex pathways in decerebrate cats. Journal of Physiology (London) 315:231–42. [aSCG]Google Scholar
Bayoumi, A. & Ashby, P. (1988) Projections of group la afferents to motoneurons of thigh muscles in man. Experimental Brain Research 342:16. [aSCG]Google Scholar
Beckstead, R. M. & Cruz, C. J. (1986) Striatal axons to the globus pallidus, entopeduncular nucleus and substantia nigra come mainly from separate cell populations in cat. Neuroscience 19:147–58. [aGEA]Google Scholar
Beek, P. J. & Bootsma, R. J. (1991) Physical and informational principles in modelling coordinated movements. Human Movement Science 10:8192. [GJvIS]Google Scholar
Beer, R. D., Hillel, J. C. & Sterling, L. S. (1991) A biological perspective on autonomous agent design. In: Designing autonomous agents, ed. Maes, A. P.. MIT Press. [SG]Google Scholar
Beitz, A. J. & Chan-Palay, V. (1979) A golgi analysis of neuronal organization in the medial cerebellar nucleus of the rat. Neuroscience 4:4763. [aJRB]Google Scholar
Bekoff, A. (1989) Continuity of pattern generating mechanisms in embryonic and posthatching chicks. In: Neurobiology of early infant behavior, ed. von Euler, V., Forssberg, H., von Hofsten, C., Lagerkranz, H. & Zetterstrom, R.. Macmillan. [CAP]Google Scholar
Bekoff, A., Nusbaum, M. P., Sabichi, A. L. & Clifford, M. (1987) Neural control of limb coordination. I. Comparison of hatching and walking motor output patterns in normal and deafferented chicks. Journal of Neuroscience 7:2320–30. [CAP]Google Scholar
Belinkii, V., Gurfinkel, V. & Paltsev, Y. (1967) Elements of control of voluntary movements. Biofizika 12:135–41. [ADK]Google Scholar
Benecke, R., Rothwell, J. C., Day, B. L., Dick, J. P. R. & Marsden, C. D. (1986) Motor strategies involved in the performance of sequential movements. Experimental Brain Research 63:585–95. [aSCG]Google Scholar
Benedetti, F., Montarolo, P. G. & Rabachi, S. (1984) Inferior olive lesion induces long-lasting functional modification in the Purkinje cells. Experimental Brain Research 55:368–74. [AMS]Google Scholar
Bennett, D. J. (1990) The control of human arm movement: Models and mechanical constraints. Doctoral Dissertation, Department of Brain and Cognitive Sciences, MIT. [aEB]Google Scholar
Bennett, D. J., Xu, Y., Hollerbach, J. M. & Hunter, I. W. (1989) Identifying the mechanical impedance of the elbow joint during posture and movement. Society for Neuroscience Abstracts 15:396. [aEB]Google Scholar
Bennett, K. M. B. (1992) Corticomotoneuronal control of precision grip tasks. Doctoral Dissertation, Cambridge University. [RL]Google Scholar
Bennett, K. M. B. & Lemon, R. N. (1991) The activity of monkey corticomotoneuronal (CM) cells is related to their pattern of post-spike facilitation of intrinsic hand muscles. Journal of Physiology 435:53p. [RL]Google Scholar
Benson, D. F. & Greenberg, J. P. (1969) Visual form agnosia. A specific defect in visual discrimination. Archives of Neurology 20:8289. [MAG]Google Scholar
Beppu, H., Nagaoka, M. & Tanaka, R. (1987) Analysis of cerebellar motor disorders by visually-guided elbow tracking movement. 2. Contribution of the visual cues on slow ramp pursuit. Brain 110:118. [aJRB]Google Scholar
Beppu, H., Suda, M. & Tanaka, R. (1984) Analysis of cerebellar motor disorders by visually guided elbow tracking movement. Brain 107:787809. [aJRB, MH]Google Scholar
Berger, W., Altenmuller, E. & Dietz, V. (1984) Normal and impaired development of children's gait. Human Neurobiology 3:163–70. [VD]Google Scholar
Bergman, H., Wichmann, T. & DeLong, M. R. (1990) Reversal of experimental Parkinsonism by lesion of the subthalamic nucleus. Science 249:1436–38. [DSB]CrossRefGoogle ScholarPubMed
Berkinblit, M. B., Feldman, A. G. & Fukson, O. I. (1986) Adaptability in innate motor patterns and motor control mechanisms. Behavioral and Brain Sciences 9:585638. [aEB, GCA, MBB, AP]CrossRefGoogle Scholar
Bernstein, N. (1935) The problem of interrelation between coordination and localization [in Russian]. Archives of Biological Sciences 38:135. [MLL]Google Scholar
Bernstein, N. (1940/1967) Biodynamics of locomotion. In: The coordination and regulation of movements (originally published in Russian in 1940). Pergamon Press. [ZH]Google Scholar
Bernstein, N. (1967) The coordination and regulation of movements. Pergamon Press. [aGEA, aEB, aSCG, aDAM, JMF]Google Scholar
Bernstein, N. (1966) Notes on the movement physiology and physiology of activity [in Russian]. Medicina. [AAF]Google Scholar
Berthoz, A. & Grantyn, A. (1986) Neuronal mechanisms of eye head coordination. In: Progressive brain research 64, ed. Freund, U.. Elsevier. [aJFS]Google Scholar
Beuter, A., Belair, J. & Labrie, C. (1992) Feedback and delays in neurological diseases: A modeling study using dynamical systems. Bulletin of Mathematical Biology, in press. [AB]Google Scholar
Beuter, A., Labrie, C. & Vasilakos, K. (1991) Transient dynamics in motor control of patients with Parkinson's disease. Chaos 1(3):279–86. [AB]CrossRefGoogle ScholarPubMed
Bigland-Ritchie, B., Dawson, N. J., Johansson, R. S. & Lippold, O. C. J. (1986) Reflex origin for the slowing of motoneurone firing rates in fatigue of human voluntary contractions. Journal of Physiology (London) 379:451–59. [aSCG]Google Scholar
Biguer, B., Donaldson, I. M. L., Hein, A. & Jeannerod, M. (1988) Neck muscle vibration modifies the representation of visual motion and direction in man. Brain 111:1405–24. [aSCG]CrossRefGoogle ScholarPubMed
Biguer, B., Jeannerod, M. & Prablanc, C. (1982) The coordination of eye, head, and arm movements during reaching at a single visual target. Experimental Brain Research 46:301–4. [VD]CrossRefGoogle Scholar
Billard, J. M., Batini, C. & Daniel, H. (1988) The red nucleus activity in rats deprived of the inferior olivary complex. Behavioral Brain Research 28:127–30. [rJRB]CrossRefGoogle ScholarPubMed
Binder, M. D. & Stuart, D. G. (1980) Motor-unit muscle receptor interactions: Design features of the neuromuscular control system. In: Progress in clinical neurophysiology, vol. 8: Spinal and supraspinal mechanisms of voluntary motor control and locomotion, ed. Desmedt, J. E.. Karger. [aSCG]Google Scholar
Bindman, L. J., Murphy, K. P. S. J. & Pockett, S. (1988) Postsynaptic control of the induction of long-term changes in efficacy of transmission at neocortical synapses in slices of rat brain. Journal of Neurophysiology 1053–65. [aGEA]Google Scholar
Bischof, H. (1991) Modular, hierarchical and geometrical neural networks. Technical Report (PRIP-TR-9, December), Department for Pattern Recognition and Image Processing, Technical University of Vienna. [HB]Google Scholar
Bischof, H., Pinz, A. & Kropatsch, W. G. (1992) Visualization methods for neural networks. Proceedings of the 11th International Conference for Pattern Recognition (ICPR92), The Hague. [HB]Google Scholar
Bisiach, E., Capitani, E. & Porta, E. (1985) Two basic properties of space representation in the brain. Journal of Neurology, Neurosurgery and Psychiatry 48:141–44. [aJFS]Google Scholar
Bisiach, E. & Luzatti, C. (1978) Unilateral neglect of representational space. Cortex 14:129–33. [aJFS]Google Scholar
Bizzi, E., Accornero, N., Chapple, W. & Hogan, N. (1982) Arm trajectory formation in monkeys. Experimental Brain Research 46:139–43. [aEB, GCA, SVA, GLG, MLL]CrossRefGoogle ScholarPubMed
Bizzi, E., Accornero, N., Chapple, W. & Hogan, N. (1984) Posture control and trajectory formation during arm movement. Journal of Neuroscience 4:2738–44. [aEB, aSCG, GCA, SVA, PRC, GEL, RBS]Google Scholar
Bizzi, E., Dev, P., Morasso, P. & Polit, A. (1978) Effect of load disturbances during centrally initiated movements. Journal of Neurophysiology 39:435–44. [aEB, AGF, GEL]Google Scholar
Bizzi, E. & Mussa-Ivaldi, F. A. (1990) Emergent issues in the control of multi-joint movements. In: From neuron to action, ed. Deecke, L., Eccles, J. C. & Mountcastle, V. B.. Springer-Verlag. [aEB]Google Scholar
Bizzi, E., Mussa-Ivaldi, F. A. & Giszter, S. (1982) Arm trajectory formation in monkeys. Experimental Brain Research 46:139–43. [aEB]Google Scholar
Bizzi, E., Mussa-Ivaldi, F. A. & Giszter, S. (1991) Computations underlying the execution of movement: A biological perspective. Science 253:287–91. [aEB, SG]Google Scholar
Bizzi, E., Polit, A. & Morasso, P. (1976) Mechanisms underlying achievement of final head position. Journal of Neurophysiology 39:435–44. [aEB]Google Scholar
Blin, O., Ferrandez, A. M., Pailhous, J. & Serratrice, G. (1991) Dopasensitive and Dopa-resistant gait parameters in Parkinson's disease. Journal of Neurological Sciences 103:5154. [GMa]Google Scholar
Bloedel, J. R. (1987) Cerebellum and memory storage. Technical comments. Science 238:1728–29. [rJRB]Google Scholar
Bloedel, J. R., Bracha, V., Kelly, T. M. & Wu, J.-Z. (1991) Substrates for motor learning: Does the cerebellum do it all? In: Activity-driven changes in learning and development, ed. J. R. Wolpaw and J. T. Schmidt. Annals of the New York Academy of Science 627:305–18. [arJRB]Google Scholar
Bloedel, J. R. & Courville, J. (1981) Cerebellar afferent systems. In: Handbook of physiology. Section I: The nervous system, ed. Brooks, V. B.. American Physiological Society. [JMB]Google Scholar
Bloedel, J. R. & Ebner, T. J. (1985) Climbing fiber function: Regulation of Purkinje cell responsiveness. In: Cerebellar functions, ed. Bloedel, J. R., Dichgans, J. & Precht, W.. Springer-Verlag. [arJRB]Google Scholar
Bloedel, J. R., Ebner, T. J. & Yu, Q.-Z. (1983) Increased responsiveness of Purkinje cells associated with climbing fiber inputs to neighboring neurons. Journal of Neurophysiology 50:220–39. [arJRB, cJFS]Google Scholar
Bloedel, J. R., Gregory, R. S. & Martin, S. H. (1972) Action of interneurons and axon collaterals in cerebellar cortex of a primate. Journal of Neurophysiology 35:847–63. [rJRB]CrossRefGoogle ScholarPubMed
Bloedel, J. R. & Kelly, T. M. (1992) The dynamic selection hypothesis: A proposed function for cerebellar sagittal zones. In: The cerebellum revisited, ed. Llinas, R. & Sotelo, C.. Springer-Verlag, in press. [aJRB, PFCG]Google Scholar
Bloedel, J. R. & Roberts, W. J. (1969) Functional relationship among neurons of the cerebellar cortex in the absence of anesthesia. Journal of Neurophysiology 32:7584. [rJRB]Google Scholar
Bloedel, J. R. & Roberts, W. J. (1971) The action of climbing fibers in the feline cerebellar cortex. Journal of Neurophysiology 34:1731. [rJRB, AMS]Google Scholar
Boegman, R., Parent, A. & Hawkes, R. (1988) Zonation in the rat cerebellar cortex: Patches of high acetylcholinesterase activity in the granular layer are congruent with Purkinje cell compartments. Brain Research 448:237–51. [aJRB, NHB]Google Scholar
Borrett, D. S., Yeap, T. H. & Kwan, H. C. (1992) Neural networks, movements and Parkinson's disease, submitted. [DSB]Google Scholar
Botterman, B. R., Binder, M. D. & Stuart, D. G. (1978) Functional anatomy of the association between motor units and muscle receptors. American Journal of Zoology 18:135–52. [aSCG]Google Scholar
Bouisset, S. & Zattara, M. (1987) Biomechanical study of the programming of anticipatory postural adjustments associated with voluntary movement. Journal of Biomechanics 20:735–42. [ADK]Google Scholar
Bouisset, S. & Zattara, M. (1990) Segmental movement as a perturbation to balance? Facts and concepts. In: Multiple muscle systems, ed. Winters, J. M. & Woo, S. L.-Y.. Springer-Verlag. [ADK, JMW]Google Scholar
Bower, J. M. (1990) Reverse engineering the nervous system: An anatomical, physiological, and computer-based approach. In: An introduction to neural and electronic networks, ed. Zornetzer, S. F., Davis, J. L. & Lau, C.. Academic. [WAM]Google Scholar
Bower, J. M. & Kassel, J. (1990) Variability in tactile projection patterns to cerebellar folia Crus IIA in the Norway rat. Journal of Comparative Neurology 302:768–78. [JMB]CrossRefGoogle ScholarPubMed
Box, G. E. P. & Jenkins, G. M. (1976) Time series analysis: Forecasting and control. Prentice-Hall. [PDN]Google Scholar
Boyd, I. A. & Roberts, T. D. M. (1953) Proprioceptive discharges from stretch-receptors in the knee joint of the cat. Journal of Physiology (London) 122:3858. [aSCG]Google Scholar
Bracewell, R. M., Barash, S., Massoni, P. & Andersen, R. A. (1991) Neurones in the macaque lateral intraparietal cortex (LIP) appear to encode the next intended saccade. Society for Neuroscience Abstracts 17:1282. [JWG, APo]Google Scholar
Bracha, V., Wu, J.-Z., Cartwright, M. & Bloedel, J. R. (1991) Selective involvement of the spinal trigeminal nucleus in the conditioned nictitating membrane reflex of the rabbit. Brain Research 556:317–20. [arJRB]Google Scholar
Bracke-Tolkmitt, R., Linden, A., Canavan, A. G. M., Rockstroh, B., Scholz, E., Wessel, K. & Diener, H.-C. (1989) The cerebellum contributes to mental skills. Behavioral Neuroscience 103:442–46. [aJRB, MH]Google Scholar
Brain, W. R. (1941) Visual disorientation with special reference to lesions to the right cerebral hemisphere. Brain 64:244–72. [DPC]Google Scholar
Braitenberg, V. (1983) The cerebellum revisited. Journal of Theoretical Neurobiology 2:237–41. [VB]Google Scholar
Braitenberg, V. (1987) The cerebellum and the physics of movement: Some speculations. In: Cerebellum and neuronal plasticity, ed. Glickstein, M., Yeo, C. & Stein, J.. Plenum. [VB]Google Scholar
Braitenberg, V. & Onesto, N. (1962) The cerebellar cortex as a timing organ. Discussion of an hypothesis. In: Proceedings of the First International Conference on Medical Cybernetics, Naples, Italy. [VB]Google Scholar
Braitenberg, V. & Preisel, H. (1992) The cerebellum and the physics of movement, in preparation. [VB]Google Scholar
Brand, S., Dahl, A. L. & Mugnaini, E. (1976) The length of parallel fibers in the cat cerebellar cortex. An experimental light and electron microscopic study. Experimental Brain Research 26:3958. [aJRB]Google Scholar
Bras, H., Cavallari, P. & Jankowska, E. (1988) Demonstration of initial axon collaterals of cells of origin of the ventral spinocerebellar tract in the cat. Journal of Comparative Neurology 273:584–92. [aDAM]Google Scholar
Bras, H., Cavallari, P., Jankowska, E. & Kubin, L. (1989a) Morphology of midlumbar interneurones relaying information from group II muscle afferents in the cat spinal cord. Journal of Comparative Neurology 290:115. [aDAM]Google Scholar
Bras, H., Cavallari, P., Jankowska, E. & McCrea, D. (1989b) Comparison of the effects of monoamines on transmission in spinal pathways from group I and II muscle spindle afferents. Experimental Brain Research 76:2737. [aDAM]Google Scholar
Bridgeman, B. (1980) Temporal response characteristics of cells in monkey striate cortex measured with metacontrast masking and brightness discrimination. Brain Research 196:347–64. [BB]Google Scholar
Bridgeman, B. (1982) Multiplexing in single cells of the alert monkey's visual cortex during brightness discrimination. Neuropsychologia 20:3342. [BB]Google Scholar
Bridgeman, B. & Artim, J. (1983) Information flow through single cells of cat striate cortex. Neuroscience Abstracts 9:619. [BB]Google Scholar
Brink, E. (1988) Segmental organization of the upper cervical cord. In: Control of head movement, ed. Peterson, B. W. & Richmond, F. J. R.. Oxford University Press. [GEL]Google Scholar
Brink, E., Jankowska, E., McCrea, D. A. & Skoog, B. (1983) Inhibitory interactions between interneurones in reflex pathways from group la and group Ib afferents in the cat. Journal of Physiology (London) 343:361–73. [aDAM, DBul]Google Scholar
Brink, E. & Mackel, R. (1987) Sensorimotor performance of the hand during peripheral nerve regeneration. Journal of the Neurological Sciences 77:249–66. [aSCG]Google Scholar
Brochu, G., Maler, L. & Hawkes, R. (1990) Zebrin II: A polypeptide antigen expressed selectively by Purkinje cells reveals compartments in rat and fish cerebellum. Journal of Comparative Neurology 291:538–52. [NHB]Google Scholar
Brodal, P. (1978) Principles of organisation of the monkey corticopontine projection. Brain 64:244–72. [aJFS]Google Scholar
Brody, B. A. & Pribram, K. H. (1978) The role of frontal and parietal cortex in cognitive processing: Tests of spatial and sequence functions. Brain 101:607–33. [DSL]CrossRefGoogle ScholarPubMed
Brooke, J. D. & McIlroy, W. E. (1989) Effect of knee joint angle on a heteronymous Ib reflex in the human lower limb. Canadian Journal of Neurological Sciences 16:5862. [aSCG]Google Scholar
Brooks, R. A. (1991) Elephants don't play chess. In: Designing autonomous agents, ed. Maes, A. P.. MIT Press. [SG]Google Scholar
Brooks, V. B. (1984) Cerebellar functions in motor control. Human Neurobiology 2:251–60. [aJRB]Google Scholar
Brooks, V. B. (1986) The neural basis of motor control. Oxford University Press. [aGEA, AAF]Google Scholar
Brooks, V. B., Kozlovskaya, I. B., Atkin, A., Horvath, F. E. & Uno, M. (1973) Effects of cooling dentate nucleus on tracking-task performance in monkeys. Journal of Neurophysiology 36:974–95. [aJRB]Google Scholar
Brooks, V. B. & Thach, W. T. (1981) Cerebellar control of posture and movement. In: Handbook of physiology, section I: The nervous system, vol. 2: Motor control, ed. Brookhart, J. M. & Mountcastle, V. B.. American Physiology Society. [aJRB]Google Scholar
Brooks, V. B. & Wilson, V. J. (1959) Recurrent inhibition in the cat's spinal cord. Journal of Physiology (London) 146:380–91. [TMH]Google Scholar
Brotchie, P. R. & Andersen, R. A. (1991) Body-centered coordinate system in posterior parietal cortex. Society for Neuroscience Abstracts 17:511.1. [rJFS, RAA, APo]Google Scholar
Brotchie, P., lansek, R. & Horne, M. (1991a) The motor function of the monkey globus pallidus: I. Neuronal discharge and parameters of movement. Brain 114:1667–83. [RI]Google Scholar
Brotchie, P., Iansek, R. & Horne, M. (1991b) The motor function of the monkey globus pallidus: II. Cognitive aspects of movement and phasic neuronal actvity. Brain 114:16851702. [RI]Google Scholar
Brotchie, P., Iansek, R. & Horne, M. (1991c) A neural network model of neural activity in the monkey globus pallidus. Neuroscience Letters 131:3336. [RI]Google Scholar
Brown, J. (1977) Mind, brain, and consciousness. Academic Press. [JMF]Google Scholar
Brown, K., Lee, J. & Ring, P. A. (1954) The sensation of passive movement at the metatarso-phalangeal joint of the great toe in man. Journal of Physiology (London) 126:448–58. [aJRB]Google Scholar
Brown, T. G. (1914) On the nature of the fundamental activity of the nervous centres; together with an analysis of the conditioning of rhythmic activity in progression, and a theory of the evolution of function in the nervous system. Journal of Physiology 48:1846. [aDAM]Google Scholar
Brown, T. H., Kairiss, E. W. & Keenan, C. L. (1990) Hebbian synapses: Biophysical mechanisms and algorithms. Annual Review of Neuroscience 13:475511, [aGEA]Google Scholar
Bruce, C. J. & Goldberg, M. E. (1985) Primate frontal eye field. I. Single neurons discharging before saccades. Journal of Neurophysiology 53:603–35. [APo]Google Scholar
Brüwer, M. & Cruse, H. (1990) A network model for the control of the movement of a redundant manipulator. Biological Cybernetics 62:549–55. [aGEA]Google Scholar
Brüwer, M. & Dean, J. (1992) Control of human arm movements in two dimensions: A comparison of movements with 2 and 3 mobile joints. Proceedings of the 20th Gottingen Neurobiology Conference. Thieme Verlag, in press. [JDe]Google Scholar
Buford, J. A. & Smith, J. L. (1990) Adaptive control for backward quadrupedal walking. 2. Hindlimb muscle synergies. Journal of Neurophysiology 64:756–66. [GMc]Google Scholar
Buford, J. A., Zernicke, R. F. & Smith, J. L. (1990) Adaptive control for backward quadrupedal walking. 1. Posture and kinematics. Journal of Neurophysiology 64:745–55. [GMc]CrossRefGoogle ScholarPubMed
Bullock, D. & Contreras-Vidal, J. L. (1991) How spinal neural networks reduce discrepancies between motor intention and motor realization. CAS/CNS Technical Report 91–023. In: Variability and motor control, ed. Newell, K. & Corcos, D.. Human Kinetics. [DBul]Google Scholar
Bullock, D., Contreras-Vidal, J. L. & Grossberg, S. (1992) Equilibria and dynamics of a neural network model for opponent muscle control. CAS/CNS Technical Report 92-017. In: Neural networks in robotics, ed. Goldberg, K. & Bekey, G.. Kluwer Academic. [DBul]Google Scholar
Bullock, D. & Grossberg, S. (1988a) Neural dynamics of planned arm movements: Emergent variants and speed-accuracy properties during trajectory formation. In: Neural network and natural intelligence, ed. Grossberg, S.. MIT Press. [AAF]Google Scholar
Bullock, D. & Grossberg, S. (1988b) Neuromuscular realization of planned trajectories. Neural Networks 1(suppl. 1);329. [DBul]Google Scholar
Bullock, D. & Grossberg, S. (1989) VITE & FLETE: Neural modules for trajectory formation and postural control. In: Volitional action, ed. Hershberger, W. A.. North-Holland/Elsevier. [DBul, TMH, DSL]Google Scholar
Bullock, D. & Grossberg, S. (1990) Spinal network computations enable independent control of muscle length and joint compliance. In: Advanced neural computers, ed. Eckmiller, R.. North-Holland. [DBul]Google Scholar
Bullock, D. & Grossberg, S. (1991) Adaptive neural networks for control of movement trajectories invariant under speed and force rescaling. Human Movement Science 10:353. [DBul, DSL, GJvIS]Google Scholar
Bullock, D. & Grossberg, S. (in press) Emergence of tri-phasic muscle activation from the nonlinear interactions of central and spinal neural network circuits. Human Movement Science 11. [DBul]Google Scholar
Bures, J., Buresova, O. & Krivanek, J. (1988) Brain and behavior. Academia. [MEI]Google Scholar
Burgess, P. R. & Clark, F. J. (1969) Characteristics of knee joint receptors in the cat. Journal of Physiology (London) 203:317–35. [aSCG]Google Scholar
Burgess, P. R., Wei, J. Y., Clark, F. J. & Simon, J. (1982) Signaling of kinesthetic information by peripheral sensory receptors. Annual Review of Neuroscience 5:171–87. [aSCG]Google Scholar
Burke, D. (1981) The activity of human muscle spindle endings in normal motor behavior. International Review of Physiology 25:91126. [arSCG]Google Scholar
Burke, D., Aniss, A. M. & Gandevia, S. C. (1987) In-parallel and in-series behavior of human muscle spindle endings. Journal of Neurophysiology 58:417–26. [aSCG]Google Scholar
Burke, D., Dickson, H. G. & Skuse, N. F. (1991) Task-dependent changes in the responses to low-threshold cutaneous afferent volleys in the human lower limb. Journal of Physiology (London) 432:445–58. [aSCG]Google Scholar
Burke, D., Gandevia, S. C. & Macefield, G. (1988) Responses to passive movement of receptors in joint, skin and muscle of the human hand. Journal of Physiology (London) 402:347–61. [aSCG]Google Scholar
Burke, D., Gandevia, S. C. & McKeon, B. (1983) The afferent volleys responsible for spinal proprioceptive reflexes in man. Journal of Physiology 339:535–52. [rSCG]Google Scholar
Burke, D., Gandevia, S. C. & McKeon, B. (1984) Monosynaptic and oligosynaptic contributions to human ankle jerk and H-reflex. Journal of Neurophysiology 52:435–48. [rSCG]Google Scholar
Burke, D., Gandevia, S. C., McKeon, B. & Skuse, N. F. (1982) Interactions between cutaneous and muscle afferent projections to cerebral cortex in man. Electroencephalography and Clinical Neurophysiology 53:349–60. [aSCG]Google Scholar
Burke, D., Gracies, J. M., Mazevet, D., Meunier, S. & Pierrot-Deseilligny, E. (1992) Convergence of descending and various peripheral inputs onto common propriospinal-like neurones in man. Journal of Physiology (London) 449:655710. [aSCG, DBur]Google Scholar
Burke, D., Hagbarth, K.-E. & Löfstedt, L. (1978a) Muscle spindle activity in man during shortening and lengthening contractions. Journal of Physiology (London) 277:131–42. [aSCG]Google Scholar
Burke, D., Hagbarth, K.-E. & Löfstedt, L. (1978b) Muscle spindle responses in man to changes in load during accurate position maintenance. Journal of Physiology (London) 276:159–64. [aSCG]Google Scholar
Burke, D., Hagbarth, K.-E., Löfstedt, L. & Wallin, B. G. (1976a) The responses of human muscle spindle endings to vibration of noncontracting muscles. Journal of Physiology (London) 261:673–93. [aSCG]Google Scholar
Burke, D., Hagbarth, K.-E., Löfstedt, L. & Wallin, B. G. (1976b) The responses of human muscle spindle endings to vibration during isometric contraction. Journal of Physiology (London) 261:695711. [aSCG]Google Scholar
Burke, D., Hagbarth, K.-E. & Skuse, N. F. (1979) Voluntary activation of spindle endings in human muscles temporarily paralysed by nerve pressure. Journal of Physiology (London) 287:329–36. [aSCG]Google Scholar
Burke, D., McKeon, B. & Skuse, N. F. (1981) Dependence of the Achilles tendon reflex on the excitability of spinal reflex pathways. Annals of Neurology 10:551–56. [rSCG]Google Scholar
Burke, D. McKeon, B., Skuse, N. F. & Westerman, R. A. (1980) Anticipation and fusimotor activity in preparation for a voluntary contraction. Journal of Physiology (London) 306:337–48. [aSCG]Google Scholar
Burton, J. E. & Onoda, N. (1977) Interpositus neurons discharge in relation to a voluntary movement. Brain Research 121:167–72. [aJRB]Google Scholar
Bushnell, M. C., Goldberg, M. E. & Robinson, D. L. (1981) Behavioral enhancement of visual responses in monkey cerebral cortex. I. Modulation in posterior parietal cortex related to selective visual attention. Journal of Neurophysiology 46:755–72. [aJFS]Google Scholar
Bussel, B., Morin, C. & Pierrot-Deseilligny, E. (1978) Mechanism of monosynaptic reflex reinforcement during Jendrassik Manoeuvre in man. Journal of Neurology, Neurosurgery and Psychiatry 41:4044. [rSCG]Google Scholar
Buys, E. R., Lemon, R. N., Mantel, G. W. B. & Muir, R. B. (1986) Selective facilitation of different hand muscles by single corticospinal neurones in the conscious monkey. Journal of Physiology (London) 381:529–49. [aGEA, aEEF, cSCG]Google Scholar
Cafarelli, D. (1988) Force sensation in fresh and fatigued human skeletal muscle. Exercise and Sports Science Review 16:139–68. [aSCG]Google Scholar
Calancie, B. M. & Stein, R. B. (1988) Microneurography for the recording and selective stimulation of afferents: An assessment. Muscle and Nerve 11:638–44. [aSCG]Google Scholar
Cameron, W. E., Binder, M. D., Botterman, B. R., Reinking, R. M. & Stuart, D. G. (1980) Motor unit-muscle spindle interactions in active muscles of decerebrate cats. Neuroscience Letters 19:5560. [aSCG]Google Scholar
Caminiti, R., Johnson, P. B. & Urbano, A. (1990) Making arm movements within different parts of space: Dynamic aspects in the primate motor cortex. Journal of Neuroscience 10:2039–58. [aEB]Google Scholar
Cannon, S. C. & Robinson, D. A. (1985) An improved neural network model for the neural integrator of the oculomotor system: More realistic neuron behavior. Biological Cybernetics 53:93108. [MF]Google Scholar
Canny, J. F. (1987) The complexity of robot motion planning. Doctoral Dissertation, Massachusetts Institute of Technology. MIT Press. [CIC]Google Scholar
Capaday, C. & Stein, R. B. (1986) Amplitude modulation of the soleus H-reflex in the human during walking and standing. Journal of Neuroscience 6:1308–13. [arSCG, TRN]Google Scholar
Capaday, C. & Stein, R. B. (1987) Difference in the amplitude of the human soleus H reflex during walking and running. Journal of Physiology (London) 392:513–22. [arSCG]Google Scholar
Cappa, S., Sterzi, R., Villar, G. & Bisiach, E. (1987) Remission of hemineglect and anosognosia during vestibular stimulation. Neuropsychologia 25:774–80. [aJFS]Google Scholar
Carlson-Kuhta, P. & Smith, J. L. (1990) Scratch responses in normal cats: Hindlimb kinematics and muscle synergies. Journal of Neurophysiology 64:1653–67. [CAP]Google Scholar
Carpenter, M. B., Nakano, K. & Kim, R. (1976) Nigrothalamic projections in the monkey demonstrated by autoradiographic technics. Journal of Comparative Neurology 165:401–16. [aGEA]Google Scholar
Carr, J. N., Louca, D. & Grobstein, P. (1991) Directed movement in the frog: Explorations using back propagation networks. Society for Neuroscience Abstracts 17:1578. [PG]Google Scholar
Carter, R. R., Crago, P. E. & Keith, M. W. (1990) Stiffness regulation by reflex action in the normal human hand. Journal of Neurophysiology 64:105–18. [TRN]Google Scholar
Cavada, C. & Goldman-Rakic, P. S. (1989a) Posterior parietal cortex in rhesus monkey. I. Parcellation of areas based on distinctive limbic and sensory corticocortical connections. Journal of Comparative Neurology 287:393421. [aJFS, WAM]Google Scholar
Cavada, C. & Goldman-Rakic, P. S. (1989b) Posterior parietal cortex in rhesus monkey. II. Evidence for segregated corticocortical networks linking sensory and limbic areas with frontal lobe. Journal of Comparative Neurology 287:422–45. [aJFS, MSG]Google Scholar
Cavada, C. & Goldman-Rakic, P. S. (1991) Topographical segregation of corticostriatal projections from posterior parietal subdivisions in the macaque monkey. Neuroscience 42:683–96. [MSG]Google Scholar
Cavallari, P., Edgley, S. A. & Jankowska, E. (1987) Post-synaptic actions of midlumbar interneurones on motoneurones of hind-limb muscles in the cat. Journal of Physiology 389:675–89. [aDAM]Google Scholar
Cavallari, P., Fournier, E., Katz, R., Malmgren, K., Pierrot-Deseilligny, E. & Shindo, M. (1985) Cutaneous facilitation of transmission in Ib reflex pathways in the human upper limb. Experimental Brain Research 60:197–99. [aSCG]Google Scholar
Cavallari, P., Fournier, E., Katz, R., Pierrot-Deseilligny, E. & Shindo, M. (1984) Changes in reciprocal la inhibition from wrist extensors to wrist flexors during voluntary movement in man. Experimental Brain Research 56:574–76. [aSCG]Google Scholar
Cavanagh, P. R., Simoneau, G. G. & Ulbrecht, J. S. (1992) Ulceration, unsteadiness, and uncertainty: The biomechanical consequences of Diabetes Mellitus. Journal of Biomechanics, in press. [PRC]Google Scholar
Cavanagh, P. R. & Ulbrecht, J. S. (1991) Biomechanics of the diabetic foot: A quantitative approach to the assessment of neuropathy, deformity, and plantar pressure. In: Disorders of the foot & ankle, 2nd ed., ed. M. H. Jahss & W. B. Saunders. [PRC]Google Scholar
Chambers, W. W. & Sprague, J. M. (1951) Differential effects of cerebellar anterior lobe cortex and fastigial nuclei on postural tonus in the cat. Science 114:324–25. [aJRB, RFT]Google Scholar
Chambers, W. W. & Sprague, J. M. (1955) Functional localization in the cerebellum. II. Somatotopic organization in cortex and nuclei. Archives of Neurology and Psychiatry 74:653–80. [aJRB, RFT]Google Scholar
Chandler, C., Hewit, J. & Miller, S. (1982) Computers, brains and the control of movement. Trends in Neuroscience 5:376. [aGEA]Google Scholar
Chang, H. T., Wilson, C. J. & Kitai, S. T. (1981) Single neostriatal efferent axons in the globus pallidus: A light and electron microscopic study (abstract). Science 213:915–18. [aGEA]Google Scholar
Chang, H. T., Wilson, C. J. & Kitai, S. T. (1982) A golgi study of rat neostriatal neurons: Light microscopic analysis. Journal of Comparative Neurology 208:107–26. [aGEA]Google Scholar
Chan-Palay, V. (1973) A light microscopic study of the cytology and organization of neurons in the simple mammalian nucleus lateralis: Columns and swirls. Zeitschrift für Anatomie und Entwicklungsgeschichte 141:125250. [aJRB]Google Scholar
Chan-Palay, V. (1977) Cerebellar dentate nucleus: Organization, cytology and transmitters. Springer-Verlag. [aJRB]Google Scholar
Chapman, C. E., Spidalieri, G. & LaMarre, Y. (1986) Activity of dentate neurons during arm movements triggered by visual, auditory, and somesthetic stimuli in the monkey. Journal of Neurophysiology 55:203–26. [aJRB]Google Scholar
Chapula, L. M. (1991) Visual function of the pulvinar. In: The neural basis of visual function, ed. Leventhal, A. G.. CRC Press. [DPC]Google Scholar
Charpentier, A. (1891) Analyse experimentale de quelques elements de la sensation de poids. Archives de Physiologie Normale et Pathologique 3:122–35. [AMG]Google Scholar
Chelazzi, L., Ghirardi, M., Rossi, F., Strata, P. & Tempia, F. (1990) Spontaneous saccades and gaze-holding ability in the Pigmented Rat. II. Effects of localized cerebellar lesions. European Journal of Neuroscience 2:1085–94. [aJRB]Google Scholar
Chen, D.-F., Hyland, B., Maier, V., Palmeri, A. & Wiesendanger, M. (1991) Comparison of neural activity in the supplementary motor cortex and in the primary motor cortex in monkeys performing a choice-reaction task. Somatosensory and Motor Research 8:2744. [aGEA, aEEF]Google Scholar
Cheney, P. D. & Fetz, E. E. (1980) Functional classes of primate corticomotoneuronal cells and their relation to active force. Journal of Neurophysiology 44:773–91. [aEB, aEEF]Google Scholar
Cheney, P. D., Fetz, E. E. & Mewes, K. (1991) Neural mechanisms underlying corticospinal and rubrospinal control of limb movements. Progress in Brain Research 87:213–52. [rEEF]Google Scholar
Cheney, P. D., Fetz, E. E. & Palmer, S. S. (1985) Patterns of facilitation and suppression of antagonist forelimb muscles from motor cortex sites in the awake monkey. Journal of Neurophysiology 53:805–20. [aEEF]Google Scholar
Cheney, P. D., Mewes, K. & Fetz, E. E. (1988) Encoding of motor parameters by corticomotoneuronal (CM) and rubromotoneuronal (RM) cells identified by spike-triggered averaging in the awake monkey. Behavioral Brain Research 28:181–91. [aEEF, AL]Google Scholar
Cherubini, E., Herrling, P. L., Lanfumey, L. & Stanzione, P. (1988) Excitatory amino acids in synaptic excitation of rat striatal neurones in vitro. Journal of Physiology (London) 400:677–90. [aGEA]Google Scholar
Chomsky, N. (1986) Knowledge of language: Its nature, origin and uses. Praeger. [JER]Google Scholar
Claparé de, E. (1901) Experiences sur la vitesse du soulevement des poids de volumes differents. Archives de Psychologie de la Suisse Romande 1:6994. [AMG]Google Scholar
Clare, M. H. & Landau, W. M. (1964) Fusimotor function, part V. Reflex reinforcement under fusimotor block in normal subjects. Archives of Neurology 10:123–27. [rSCG]Google Scholar
Clark, F. J. (1975) Information signaled by sensory fibers in medial articular nerve. Journal of Neurophysiology 38:1464–72. [aSCG]Google Scholar
Clark, F. J. & Burgess, P. R. (1975) Slowly adapting receptors in cat knee joint: Can they signal joint angle? Journal of Neurophysiology 38:1448–63. [aSCG]Google Scholar
Clark, F. J., Burgess, R. C. & Chapin, J. W. (1986) Proprioception with the proximal interphalangeal joint of the index finger. Evidence for a movement sense without a static-position sense. Brain 109:11951208. [aSCG]Google Scholar
Clark, F. J., Burgess, R. C., Chapin, J. W. & Lipscomb, W. T. (1985) Role of intramuscular receptors in the awareness of limb position. Journal of Neurophysiology 54:1529–40. [aSCG]Google Scholar
Clark, F. J., Grigg, P. & Chapin, J. W. (1989) The contribution of articular receptors to proprioception with the fingers in humans. Journal of Neurophysiology 61:186–93. [aSCG]Google Scholar
Clark, F. J., Horch, K. W., Bach, S. M. & Larson, G. F. (1979) Contributions of cutaneous and joint receptors to static knee-position sense in man. Journal of Neurophysiology 42:877–88. [aSCG]Google Scholar
Clark, R. E., Zhang, A. A. & Lavond, D. G. (1992) Reversible lesions of the cerebellar interpositus nucleus during acquisition and retention of a classically conditioned behavior. Behavioral Neuroscience, in press. [rJRB, RFT]Google Scholar
Clarke, T. L. & Ronayne, T. (1991) Categorical approach to machine learning. Proceedings of the 1991 IEEE conference of systems, man and cybernetics. Institute of Electrical and Electronics Engineers. [TLC]Google Scholar
Cleland, C. & Rymer, W. (1990) Neural mechanisms underlying the clasp knife reflex in the cat. I. Characteristics of the reflex. Journal of Neurophysiology 64:1303–18. [aDAM]Google Scholar
Coburn, K. L., Ashford, J. W. & Fuster, J. M. (1990) Visual response latencies in temporal lobe structures as a function of stimulus information load. Behavioral Neuroscience 104:6273. [JMF]Google Scholar
Cogan, D. G. (1953) Ophthalmic manifestations of bilateral non-occipital cerebral lesions. British Journal of Ophthalmology 49:281–97. [JWG]Google Scholar
Cohen, L. A. (1961) Role of eye and neck proprioceptive mechanisms in body orientation and motor coordination. Journal of Neurophysiology 24:111. [DPC]Google Scholar
Colby, C. L. & Duhamel, J.-R. (1991) Heterogeneity of extrastriate visual areas and multiple parietal areas in the macaque monkey. Neuropsychologia 29:497515. [CLC]Google Scholar
Colby, C. L., Duhamel, J.-R. & Goldberg, M. E. (1992) The analysis of visual space by the lateral intraparietal area of the monkey: The role of extraretinal signals. Progress in Brain Research, in press. [CLC]CrossRefGoogle Scholar
Cole, J. D. (1986) Observations on the sense of effort in a man without large myelinated cutaneous and proprioceptive sensory fibres below the neck. Journal of Physiology (London) 382:80P. [aSCG, PRC]Google Scholar
Cole, J. D., Katifi, H. A. & Sedgwick, E. M. (1986) Observations on a man without large myelinated fibre sensory input from below the neck. Journal of Physiology (London) 376:47P. [aSCG, PRC]Google Scholar
Cole, K. J. & Abbs, J. H. (1987) Kinematic and electromyographic responses to perturbation of a rapid grasp. Journal of Neurophysiology 57:14981510. [aSCG]Google Scholar
Colebatch, J. G. & McCloskey, D. I. (1987) Maintenance of constant arm position or force: Reflex and volitional components in man. Journal of Physiology (London) 386:247–61. [aSCG]Google Scholar
Colgate, J. E. (1988) The control of dynamically interacting systems. Doctoral Dissertation, Department of Mechanical Engineering. MIT Press. [aEB]Google Scholar
Colgate, J. E. & Hogan, N. (1988) Robust control of dynamically interacting systems. International Journal of Control 48:6588. [aEB]Google Scholar
Connolly, C. I., Burns, J. B. & Weiss, R. (1990) Path planning using Laplace's equation. In: Proceedings of the 1990 IEEE International Conference on Robotics and Automation 3. Institute of Electrical and Electronics Engineers Computer Society Press. [CIC]Google Scholar
Conway, B. A., Hultborn, H. & Kiehn, O. (1987) Proprioceptive input resets central locomotor rhythm in the spinal cat. Experimental Brain Research 68:643–56. [VD]Google Scholar
Cook, D. & Kesner, R. P. (1988) Caudate nucleus and memory for egocentric localization. Behavioral Neural Biology 49:332–43. [DI]Google Scholar
Cooke, J. D. (1980) The role of stretch reflexes during active movements. Brain Research 181:493–97. [aSCG]Google Scholar
Cooke, K. L. & Grossman, Z. (1982) Discrete delay, distributed delay and stability switches. Journal of Mathematical Analysis and Applications 86:592627. [AB]Google Scholar
Cools, A. R., Jaspers, R., Schwarz, M., Sontag, K. H., Vrijmoed-deVries, M. & van den Bercken, J. (1984) Basal ganglia and switching motor programs. In: The basal ganglia. Structure and function, ed. McKenzie, J. S., Kemm, R. E. & Wilcock, L. N.. Plenum. [aGEA]Google Scholar
Corbetta, M., Miezin, F. M., Shulman, G. L. & Petersen, S. E. (1991) Selective attention modulates extrastriate visual regions in humans during visual feature discrimination and recognition. In: Exploring brain functional anatomy with positron tomography, ed. Chadwick, D. J. & Whelan, J.. Wiley. [RE]Google Scholar
Cordo, P. J. (1987) Mechanisms controlling accurate changes in elbow torque in humans. Journal of Neuroscience 7(2):432–42. [PJC]Google Scholar
Cordo, P. J. (1990) Kinesthetic control of a multijoint movement sequence. Journal of Neurophysiology 63:161–72. [aSCG]Google Scholar
Cordo, P. J. & Flanders, M. (1989) The sensory basis of target acquisition. Trends in Neuroscience 12:110–17. [PJC]Google Scholar
Corin, M. S. & Bender, M. B. (1972) Mislocalization in visual space. Archives of Neurology 27:252–62. [DPC]Google Scholar
Coulter, J. D. & Jones, E. G. (1977) Differential distribution of corticospinal projections from individual cytoarchitectonic fields in the monkey. Brain Research 129:335–40. [aEEF]Google Scholar
Courville, J. & Diakiw, N. (1976) Cerebellar cortico-nuclear projection in the cat. The vermis of the anterior and posterior lobes. Brain Research 110:120. [aJRB]Google Scholar
Crago, P. E., Houk, J. C. & Hasan, Z. (1976) Regulatory actions of the human stretch reflex. Journal of Neurophysiology 39:925–35. [SVA]Google Scholar
Crago, P. E., Houk, J. C. & Rymer, W. Z. (1982) Sampling of total muscle force by tendon organs. Journal of Neurophysiology 47:1069–83. [aSCG]Google Scholar
Crammond, D. J. & Kalaska, J. F. (1989) Neuronal activity in primate parietal cortex area 5 varies with intended movement direction during an instructed-delay period. Experimental Brain Research 76:458–62. [JFK, PM]Google Scholar
Craske, B. (1977) Perception of impossible limb positions induced by tendon vibration. Science 196:7173. [aSCG]Google Scholar
Crenna, P. & Frigo, C. (1987) Excitability of the soleus H-reflex arc during walking and stepping in man. Experimental Brain Research 66:4960. [aSCG]Google Scholar
Crepel, F. & Jaillard, D. (1991) Pairing of pre- and postsynaptic activities in cerebellar Purkinje cells induces long-term changes in synaptic efficacy in vitro. Journal of Physiology 432:123–41. [rJRB, cJFS]Google Scholar
Crick, F. (1984) Function of the thalamic reticular complex. The searchlight hypothesis. Proceedings of the National Academy of Science USA 81:4586–90. [aJFS]Google Scholar
Crick, F. (1989) The recent excitement about neural networks. Nature 337:129–32. [RE]Google Scholar
Critchley, M. (1953) The parietal lobes. Hafher. [aJFS]Google Scholar
Crone, C., Hultborn, H., Jespersen, B. & Nielsen, J. (1987) Reciprocal la inhibition between ankle flexors and extensors in man. Journal of Physiology (London) 389:163–85. [aSCG]Google Scholar
Crone, C., Hultborn, H., Kiehn, O., Mazieres, L. & Wigström, H. (1988) Maintained changes in motoneuronal excitability by short-lasting synaptic inputs in the decerebrate cat. Journal of Physiology (London) 405:321–43. [aDAM, AGF]Google Scholar
Crone, C. & Nielsen, J. (1989) Spinal mechanisms in man contributing to reciprocal inhibition during voluntary dorsiflexion of the foot. Journal of Physiology (London) 416:255–72. [aSCG]Google Scholar
Cross, M. J. & McCloskey, D. I. (1973) Position sense following surgical removal of joints in man. Brain Research 55:443–45. [aSCG]Google Scholar
Cruse, H. (1985) Which parameters control the leg movements of a walking insect? I. Velocity control during the stance phase. Journal of Experimental Biology 116:343–55. [JDe]Google Scholar
Cruse, H. (1986) Constraints for joint angle control of the human arm. Biological Cybernetics 54:125–32. [JDe]Google Scholar
Cruse, H. & Graham, D. (1985) Models for the analysis of walking in arthropods. In: Coordination of motor behaviour. Society for Experimental Biology Seminar Series 24, ed. Bush, B. M. H. & Clarac, F.. Cambridge University Press. [JDe]Google Scholar
Cruse, H., Wischmeyer, E., Bruwer, M., Brockfeld, P. & Dress, A. (1990) On the cost functions for the control of the human arm movement. Biological Cybernetics 62:519–28. [JDe]Google Scholar
Crutcher, M. D. & Alexander, G. E. (1990) Movement-related neuronal activity selectively coding either direction or muscle pattern in three motor areas of the monkey. Journal of Neurophysiology 64:151–63. [aGEA, aEEF, JMF]Google Scholar
Crutcher, M. D. & DeLong, M. R. (1984a) Single cell studies of the primate putamen I. Functional organization. Experimental Brain Research 53:233–43. [aGEA, CIC, MSG]Google Scholar
Crutcher, M. D. & DeLong, M. R. (1984b) Single cell studies of the primate putamen II. Relations to direction of movement and pattern of muscular activity. Experimental Brain Research 53:244–58. [aGEA, CIC]Google Scholar
Cullheim, S. & Kellerth, J.-O. (1978) A morphological study of the axons and recurrent axon collaterals of cat alpha-motoneurones supplying different hindlimb muscles. Journal of Physiology (London) 281:285–99. [TMH]Google Scholar
Cummins, R. & Schwarz, G. (1991) Connectionism, computation, and cognition. In: Connectionism and the philosophy of mind, ed. Horgan, T. & Tienson, J.. Kluwer. [GS]Google Scholar
Currie, S. N. & Stein, P. S. G. (1990) Cutaneous stimulation evokes longlasting excitation of spinal interneurons in the turtle. Journal of Neurophysiology 64:1134–48. [CAP]Google Scholar
Dahhaoui, M., Caston, J., Auvray, N. & Reber, A. (1990) Role of the cerebellum in an avoidance conditioning task in the rat. Physiology & Behavior 47:1175–80. [rJRB]Google Scholar
Darpa Neural Network Study (1988) AFCEA International Press. [HB]Google Scholar
Darton, K., Lippold, O. C. J., Shahani, M. & Shahani, U. (1985) Longlatency spinal reflexes in humans. Journal of Neurophysiology 53:1604–18. [JDu]Google Scholar
Davey, N. J. & Ellaway, P. H. (1989) Facilitation of individual γ-motoneurones by the discharge of single slowly adapting type 1 mechanoreceptors in cats. Journal of Physiology (London) 411:97114. [aSCG]Google Scholar
Davidoff, R. & Hackman, J. (1984) Spinal inhibition. In: Handbook of the spinal cord, ed. Davidoff, R. A.. Marcel Dekker. [aDAM]Google Scholar
Davies, J. G. M., Kirkwood, P. A. & Sears, T. A. (1985) The detection of monosynaptic connexions from inspiratory bulbospinal neurones to inspiratory motoneurones in the cat. Journal of Physiology 368:3362. [rEEF, PAK]Google Scholar
Davis, C. M. & Roberts, W. (1976) Lifting movements in the size-weight illusion. Perception and Psychophysics 20:3336. [HER]Google Scholar
Dawson, M. R. W. (1991) The how and why of what went where in apparent motion: Modeling solutions to the motion correspondence problem. Psychological Review 98:569603. [MRWD]Google Scholar
Day, B. L. & Marsden, C. D. (1982) Accurate repositioning of the human thumb against unpredictable dynamic loads is dependent upon peripheral feedback. Journal of Physiology (London) 327:393407. [aEB, aSCG, AGF, MH]Google Scholar
Day, B. L., Marsden, C. D., Obeso, J. A., Rothwell, J. C. (1984) Reciprocal inhibition between the muscles of the human forearm. Journal of Physiology (London) 349:519–34. [aSCG]Google Scholar
Dean, J. (1984) Control of leg protraction in the stick insect: A targeted movement showing compensation for externally applied forces. Journal of Comparative Physiology 155:771–81. [JDe]Google Scholar
Dean, J. (1990) Coding proprioceptive information to control movement to a target: Simulation with a simple neural network. Biological Cybernetics 63:115–20. [JDe]Google Scholar
Dean, J. (1991a) A model of leg coordination in the stick insect, Carausius morosus. II. Simulation of normal step patterns. Biological Cybernetics 64:403–11. [JDe]Google Scholar
Dean, J. (1991b) Effect of load on leg movement and step coordination of the stick insect Carausius morosus. Journal of Experimental Biology 159:449–71. [JDe]Google Scholar
Dean, J. & Brüwer, M. (1992) Control of human arm movements in two dimensions: Paths and joint control in avoiding simple linear obstacles. Proceedings of the 20th Gottingen Neurobiology Conference. Thieme Verlag, in press. [JDe]Google Scholar
Dean, J. & Cruse, H. (1986) Evidence for the control of velocity as well as position in leg protraction and retraction by the stick insect. In: Generation and modulation of action patterns, ed. Heuer, H. & Fromm, C.. Experimental Brain Research Series 15. Springer-Verlag. [JDe]Google Scholar
Decety, J. & Ingvar, D. H. (1990) Brain structures participating in mental simulation of motor behavior. A neuropsychological interpretation. Acta Psychologica 73:1334. [PM]Google Scholar
Deliagina, T. G. & Feldman, A. G. (1981) Activity of Renshaw cells during fictive scratch reflex in cat. Experimental Brain Research 42:108115. [CAP]Google Scholar
Deliagina, T. G., Feldman, A. G., Gelfand, I. M. & Orlovsky, G. N. (1975) On the role of central program and afferent inflow in the control of scratching movement in the cat. Brain Research 100:297313. [MBB, AP]Google Scholar
Deliagina, T. G. & Orlovsky, G. N. (1980) Activity of la inhibitory interneurons during fictive scratch reflex in the cat. Brain Research 193:439–47. [CAP]Google Scholar
Deliagina, T., Orlovsky, G., Pavlova, G. & Popova, L. (1981) Activity of propriospinal neurons of ventral horn of upper lumbar segments during fictive scratch reflex. Nejrofiziologija 13:647–48. [aDAM]Google Scholar
DeLong, M. R., Crutcher, M. D. & Georgopoulos, A. P. (1985) Primate globus pallidus and subthalamic nucleus: Functional organization. Journal of Neurophysiology 53:530–43. [aGEA]Google Scholar
DeLuca, C. J. (1985) Control properties of motor units. Journal of Experimental Biology 115:125–36. [DBul]Google Scholar
Delwaide, P. J. & Gonce, M. (1988) Pathophysiology of Parkinson's signs. In: Parkinson's disease and movement disorders, ed. Jankovic, J. & Tolosa, E.. Urban & Schwarzenberg. [JJS]Google Scholar
Delwaide, P. J., Sabatino, M., Pepin, J. L. & La Grutta, V. (1988) Reinforcement of reciprocal inhibition by contralateral movements in man. Experimental Neurology 99:1016. [aSCG]Google Scholar
Denes, G., Caviezel, F. & Semenza, C. (1982) Difficulty in reaching objects and body parts: A sensorymotor disconnexion syndrome. Cortex 18:165–73. [MAG]Google Scholar
Deniau, J. M. & Chevalier, G. (1985) Disinhibition as a basic process in the expression of striatal functions. II. The striato-nigral influence on thalamocortical cells of the ventromedial thalamic nucleus. Brain Research 334:227–33. [aGEA]Google Scholar
Denning, P. J. & Tichy, W. F. (1990) Highly parallel computation. Science 250:1217–22. [aGEA]Google Scholar
Denny-Brown, D. (1962) The basal ganglia and their relation to disorders of movement. Oxford University Press. [GMa]Google Scholar
Denny-Brown, D. & Chambers, R. A. (1958) The parietal lobes and behavior. Research Publications for the Association of Research in Mental Disease 36:35117. [aJFS]Google Scholar
Desimone, R. & Ungerleider, L. G. (1989) Neural mechanisms of visual processing in monkeys. In: Handbook of neuropsychology, vol. 2, ed. Boiler, F. & Grafman, J.. Elsevier. [RE]Google Scholar
Devanandan, M.S., Ghosh, S. & John, K. T. (1983) A quantitative study of muscle spindles and tendon organs in some intrinsic muscles of the hand in the bonnet monkey (Macaca radiata). Anatomical Record 207:263–66. [aSCG]Google Scholar
Devaney, R. L. (1986) An introduction to chaotic dynamical systems. Cummings. [DSB]Google Scholar
DeVito, J. L. & Anderson, M. E. (1982) An autoradiographic study of efferent connections of the globus pallidus. Experimental Brain Research 46:107–17. [aGEA]Google Scholar
DeVito, J. L., Anderson, M. E. & Walsh, K. E. (1980) A horseradish peroxidase study of afferent connections of the globus pallidus in Macaca mulatta. Experimental Brain Research 38:6573. [aGEA]Google Scholar
Dichgans, J. & Diener, H. C. (1985) Clinical evidence for functional compartmentalization of the cerebellum. In: Cerebellar functions, ed. Bloedel, J. R., Dichgans, J. D. & Precht, W.. Springer. [aJRB]Google Scholar
Diener, H. C., Dichgans, J., Bacher, M. & Gompf, B. (1984) Quantification of postural sway in normals and patients with cerebellar diseases. Electroencephalography and Clinical Neurophysiology 57:134–42. [aJRB]Google Scholar
Dietrichs, E. & Walberg, F. (1979) The cerebellar corticonuclear and nucleocortical projections in the cat studied with anterograde and retrograde transport of horseradish peroxidase. I. The paramedian lobule. Anatomy and Embryology 158:1339. [aJRB]Google Scholar
Dietrichs, E. & Walberg, F. (1980) The cerebellar corticonuclear and nucleocortical projections in the cat as studied with anterograde and retrograde transport of horseradish peroxidase. II. Lobulus simplex, Crus I and Crus II. Anatomy and Embryology 161:83103. [aJRB]Google Scholar
Dietz, V. (1992) Human neuronal control of automatic functional movements: Interaction between central programs and afferent input. Physiological Reviews 72:3369. [VD]Google Scholar
Dietz, V., Berger, W. & Quintem, J. (1987) Task-dependent gating of somatosensory transmission in two different motor tasks in man: Falling and writing. Neuroscience Letters 75:288–92. [VD]Google Scholar
Dietz, V., Faist, M. & Pierrot-Deseilligny, E. (1990) Amplitude modulation of the quadriceps H-reflex in the human during the early stance phase of gait. Experimental Brain Research 79:221–24. [aDAM]Google Scholar
Dietz, V., Gollhofer, A., Kleiber, M. & Trippel, M. (1992) Regulation of bipedal stance: Dependency on “load” receptors. Experimental Brain Research 89:229–31. [VD]Google Scholar
Dietz, V., Horstmann, G. A. & Berger, W. (1989a) Interlimb co-ordination of leg muscle activation during perturbation of stance in humans. Journal of Neurophysiology 62:680–93. [VD]Google Scholar
Dietz, V., Horstmann, G. A., Trippel, M. & Gollhofer, A. (1989b) Human postural reflexes and gravity—an underwater simulation. Neuroscience Letters 106:350–55. [VD]Google Scholar
Dietz, V., Trippel, M. & Berger, W. (1991a) Reflex activity and muscle tone during elbow movements in patients with spastic paresis. Annals of Neurology 30:767–79. [VD]Google Scholar
Dietz, V., Trippel, M., Discher, M. & Horstmann, G. A. (1991b) Compensation of human stance perturbations: Selection of the appropriate electromyographic pattern. Neuroscience Letters 126:7174. [VD]Google Scholar
Dimitrov, B., Hallett, M. & Sanes, J. N. (1989) Differential influence of posture and intentional movement on human somatosensory evoked potentials evoked by different stimuli. Brain Research 496:211–18. [aSCG]Google Scholar
Dinse, H. R., Krueger, K. & Best, J. (1990) A temporal structure of cortical information processing. Concepts in Neuroscience 1:199238. [IT]Google Scholar
Disterhoft, J. F., Quinn, K. J., Weiss, C. & Shipley, M. T. (1985) Accessory abducens nucleus and conditioned eye retraction nictitating membrane extension in rabbit. Journal of Neuroscience 5:941–50. [RFT]Google Scholar
Divac, I., Lavail, J. H., Rakic, P. & Winston, K. R. (1977) Heterogeneous afferents to the inferior parietal lobule of the rhesus monkey revealed by the retrograde transport method. Brain Research 123:197207. [aJFS]Google Scholar
Dodwell, P. C. (1983) The Lie transformation group model of visual perception. Perception & Psychophysics 34:116. [TLC]Google Scholar
Donoghue, J. P., Suner, S. & Sanes, J. N. (1990) Dynamic organization of primary motor cortex output to target muscles in adult rats. II. Rapid reorganization following motor nerve lesions. Experimental Brain Research 79:492503. [aGEA]Google Scholar
Dore, L., Jacobson, C. D. & Hawkes, R. (1990) Organization and postnatal development of zebrin II antigenic compartmentation in the cerebellar vermis of the grey opossum, Monodelphis domestica. Journal of Comparative Neurology 291:431–49. [aJRB]Google Scholar
Dow, R. S. & Moruzzi, G. (1958) The physiology and pathology of the cerebellum. University of Minnesota Press. [rJRB]Google Scholar
Drew, T., Dubuc, R. & Rossignol, S. (1986) Discharge patterns of reticulospinal and other reticular neurons in chronic, unrestrained cats walking on a treadmill. Journal of Neurophysiology 55:375401. [rDAM]Google Scholar
Driver, J. & Halligan, P. (1991) Can visual neglect operate in object-centered coordinates? Cognitive Neuropsychology 8:475–96. [rJFS]Google Scholar
Duenas, S. & Rudomin, P. (1988) Excitability changes of ankle extensor group la and Ib fibers during fictive locomotion in the cat. Experimental Brain Research 70:1525. [aDAM]Google Scholar
Dugas, C., Picard, N. & Smith, A. M. (1989) Changes in simple and complex spike activity in Purkinje cells induced by slip of an object held between the thumb and forefinger. Society for Neuroscience Abstracts 15:613. [JMB]Google Scholar
Duhamel, J.-R., Colby, C. L. & Goldberg, M. E. (1991) Congruent representations of visual and somatosensory space in single neurons of monkey ventral intra-parietal cortex (area VIP). In: Brain and space, ed. Paillard, J.. Oxford University Press. [JFK]Google Scholar
Duhamel, J.-R., Colby, C. L. & Goldberg, M. E. (1992) The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255:9092. [CLC, RE, JWG]Google Scholar
Dum, R. P. & Strick, P. L. (1991) Premotor areas: Nodal points for parallel efferent systems involved in the central control of movement. In: Motor control: Concepts and issues, ed. Humphrey, D. R. & H.-J., Freund. Wiley. [aGEA]Google Scholar
Duncan, J. (1977) Response selection rules in spatial choice reaction tasks. In: Attention and performance, ed. Dornic, S.. Erlbaum. [RWP]Google Scholar
Durlach, N. I., Delhorne, L. A., Wong, A., Ko, W. Y., Rabinowitz, W. M. & Hollenbach, J. (1989) Manual discrimination and identification of length by the finger-span method. Perception & Phychophysics 46:2938. [FC]Google Scholar
Duysens, J. & Pearson, K. G. (1980) Inhibition of flexor burst generation by loading extensor muscles in walking cat. Brain Research 187:321–32. [VD, APr]Google Scholar
Duysens, J. & Stein, R. B. (1978) Reflexes induced by nerve stimulation in walking cats with implanted cuff electrodes. Experimental Brain Research 32:213–24. [JDu]Google Scholar
Duysens, J., Tax, A. A. M., Doelen, B. van der, Trippel, M. & Dietz, V. (1991) Selective activation of human soleus or gastrocnemius in reflex responses during walking and running. Experimental Brain Research 87:193204. [JDu]Google Scholar
Duysens, J., Trippel, M., Horstmann, G. A. & Dietz, V. (1990) Gating and reversal of reflexes in ankle muscles during human walking. Experimental Brain Research 82:351–35. [JDu]Google Scholar
Dyck, P. J. & Brown, M. J. (1987) Diabetic polyneuropathy. In: Diabetic neuropathy, ed. Dyck, P. J., Thomas, P. K., Asbury, A. K., Winegrad, A. I. & Porte, D.. Saunders. [PRC]Google Scholar
Dyck, P. J., Karnes, J. & O'Brien, P. C. (1987a) Diagnosis, staging, and classification of diabetic neuropathy and association with other complications. In: Diabetic neuropathy, ed. Dyck, P. J., Thomas, P. K., Asbury, A. K., Winegrad, A. I. & Porte, D.. Saunders. [PRC]Google Scholar
Dyck, P. J., Karnes, J., O'Brien, P. C. & Zimmerman, I. R. (1987b) Detection thresholds of cutaneous sensation in humans. In: Peripheral neuropathy, ed. Dyck, P. J., Thomas, P. K., Lambert, E. H. & Bunge, R.. Saunders. [PRC]Google Scholar
Ebner, T. J. & Bloedel, J. R. (1984) Climbing fiber action on the responsiveness of Purkinje cells to parallel fiber inputs. Brain Research 309:182–86. [arJRB]Google Scholar
Ebner, T. J., Yu, Q.-X. & Bloedel, J. R. (1983) Increase in Purkinje cell gain associated with naturally activated climbing fiber inputs. Journal of Neurophysiology 50:205–19. [arJRB]Google Scholar
Eccles, J. C. (1969) The dynamic loop hypothesis of movement control. In: Information processing in the nervous system, ed. Leibovic, K. N.. Springer-Verlag. [cJFS]Google Scholar
Eccles, J. C. (1977) An instruction-selection theory of learning in the cerebellar cortex. Brain Research 127:327–52. [RFT]Google Scholar
Eccles, J. C. (1982) The initiation of voluntary movements by the supplementary motor area. Archiv für Psychiatrie und Nervenkrankheiten 231:423–41. [aGEA]Google Scholar
Eccles, J. C., Eccles, R. M. & Lundberg, A. (1957) Synaptic actions on motoneurones caused by impulses in Golgi tendon organ afferents. Journal of Physiology (London) 138:227–52. [DBul]Google Scholar
Eccles, J. C., Fatt, P. & Koketsu, K. (1954) Cholinergic and inhibitory synapses in a pathway from motor-axon collaterals to motoneurones. Journal of Physiology (London) 126:524–62. [aDAM, DBul]Google Scholar
Eccles, J. C., Ito, M. & Szentagothai, J. (1967) The cerebellum as a neuronal machine. Springer-Verlag. [aJRB, RFT]Google Scholar
Eccles, J. C., Llinas, R. & Sasaki, K. (1966) The excitatory synaptic action of climbing fibres on the Purkinje cells of the cerebellum. Journal of Physiology 182:268–96. [cJFS]Google Scholar
Eccles, R. M. & Lundberg, A. (1958) Integrative pattern of Ia synaptic actions on motoneurons of hip and knee muscles. Journal of Physiology (London) 144:271–98. [DBul]Google Scholar
Eccles, R. M. & Lundberg, A. (1959) Synaptic action in motoneurones by afferents which may evoke the flexion reflex. Archives Italiennes de Biologie 97:199221. [aDAM]Google Scholar
Edelman, G. M. & Mountcastle, V. B. (1978) The mindful brain: Cortical organization and the group-selective theory of higher brain function. MIT Press. [aJRB]Google Scholar
Edgley, S. & Jankowska, E. (1987) An interneuronal relay for group I and II muscle afferents in the middle lumbar segments of the cat spinal cord. Journal of Physiology 389:647–74. [aDAM]Google Scholar
Edgley, S. A., Jankowska, E. & Schefchyk, (1988) Evidence that mid-lumbar neurones in reflex pathways from group II afferents are involved in locomotion in the cat. Journal of Physiology 403:5771. [aDAM, AL]Google Scholar
Edgley, S. & Wallace, N. (1989) A short-latency crossed pathway from cutaneous afferents to rat hindlimb motoneurones. Journal of Physiology 411:469–80. [aDAM]Google Scholar
Edin, B. B. & Abbs, J. H. (1991) Finger movement responses of cutaneous mechanoreceptors in the dorsal skin of the human hand. Journal of Neurophysiology 65:657–70. [aSCG]Google Scholar
Edin, B. B. & Vallbo, Å. B. (1990a) Dynamic response of human muscle spindle afferents to stretch. Journal of Neurophysiology 63:12971306. [aSCG]Google Scholar
Edin, B. B. & Vallbo, Å. B. (1990b) Classification of human muscle stretch receptor afferents: A Bayesian approach. Journal of Neurophysiology 63:1314–22. [aSCG]Google Scholar
Edin, B. B. & Vallbo, Å. B. (1990c) Muscle afferent responses to isometric contractions and relaxations in humans. Journal of Neurophysiology 63:1307–12. [aSCG]Google Scholar
Edin, B. E., Westling, G. & Johansson, R. S. (1992) Independent control of human finger tip forces at individual digits during precision lifting. Journal of Physiology, in press. [AMG]Google Scholar
Edwards, R. T. H., Wiles, C. M. & Mills, K. R. (1984) Quantitation of muscle contraction and strength. In: Peripheral neuropathy, ed. Dyck, P. J., Thomas, P. K., Lambert, E. H. & Bunge, R.. Saunders. [PRC]Google Scholar
Eich, J. (1982) A composite holographic associative recall model. Psychological Review 89:627–61. [BB]Google Scholar
Eklund, G. (1972) Position sense and state of contraction: The effects of vibration. Journal of Neurology, Neurosurgery & Psychiatry 35:606–11. [aSCG]Google Scholar
Eldred, E., Granit, R. & Merton, P. A. (1953) Supraspinal control of the muscle spindles and its significance. Journal of Physiology (London) 122:498523. [rEB]Google Scholar
Eliasson, A. C., Gordon, A. M. & Forssberg, H. (1991) Basic coordination of manipulative forces in children with cerebral palsy. Developmental Medicine and Child Neurology 33:661–70. [AMG]Google Scholar
Ellaway, P. H. (1968) Antidromic inhibition of fusimotor neurons. Journal of Physiology (London) 198:3940. [DBul]Google Scholar
Ellaway, P. H. & Murphy, P. R. (1980) A quantitative comparison of recurrent inhibition of alpha- and gamma-motoneurones in the cat. Journal of Physiology (London) 315:4358. [DBul]Google Scholar
Elman, J. (1990) Finding structure in time. Cognitive Science 14:179211. [JER]Google Scholar
Elner, A. M., Gurfinkel, V. S., Lipshits, M. I., Mamasakhlisov, G. H. & Popov, K. E. (1976) Facilitation of stretch reflex by additional support during quiet stance. Agressologie 17:1520. [VD]Google Scholar
Emonet-Dénand, F., Hunt, C. C. & Laporte, Y. (1985) Effects of stretch on dynamic fusimotor after-effects in cat muscle spindle. Journal of Physiology (London) 360:201–21. [JP]Google Scholar
Engberg, I. (1964) Reflexes to foot muscles in the cat. Ada Physiologica Scandinavica 62:Suppl. 235. [aDAM]Google Scholar
Engberg, I., Lundberg, A. & Ryall, R. W. (1968) Reticulospinal inhibition of interneurones. Journal of Physiology 194:225–36. [aDAM]Google Scholar
Engen, T. (1971) Psychophysics. In: Experimental psychology, ed. Kling, J. W. & Riggs, L. A.. Holt, Rinehart & Winston. [HER]Google Scholar
Evans, A. L., Harrison, L. M. & Stephens, J. A. (1989) Task-dependent changes in cutaneous reflexes recorded from various muscles controlling finger movement in man. Journal of Physiology (London) 418:112. [aSCG]Google Scholar
Evarts, E. V. (1968) Relation of pyramidal tract activity to force exerted during voluntary movement. Journal of Neurophysiology 31:1427. [aEEF, MEI]Google Scholar
Evarts, E. V. (1981) Role of motor cortex in voluntary movement In: Handbook of physiology, vol. 2. American Physiological Society, Waverly Press. [aEEF, MEI]Google Scholar
Evarts, E. V., Fromm, C., Kroller, J. & Jennings, V. A. (1983) Motor cortex control of finely graded forces. Journal of Neurophysiology 49:11991215. [aEB]Google Scholar
Ewert, J.-P. & Gebauer, L. (1973) Grossenkonstanzphanomene im Beutefangverhalten der Erdkröte. Bufo bufo L. Journal of Comparative Physiology 85:303–15. [DI]Google Scholar
Farah, M. (1990) Visual agnosia. MIT Press. [MAG]Google Scholar
Feigenbaum, J. D. & Rolls, E. T. (1991) Allocentric and egocentric spatial information processing in the hippocampal formation of the behaving primate. Psychobiology 19:2140. [WAM]Google Scholar
Feldman, A. G. (1966a) Functional tuning of the nervous system during control of movement or maintenance of a steady posture II. Controllable parameters of the muscle. Biofizika 11:498508 [English translation 565–78]. [GCA, AGF, GLG, MLL, JBJS]Google Scholar
Feldman, A. G. (1966b) Functional tuning of the nervous system during control of movement or maintenance of a steady posture. III. Mechanographic analysis of the execution by man of the simplest motor task. Biophysics 11:766–75. [aEB, SRG]Google Scholar
Feldman, A. G. (1976) Control of postural length and force of a muscle: Advantages of the central co-activation of alpha and gamma static motoneurons. Biophysics 21:187–89. [AGF]Google Scholar
Feldman, A. G. (1979) Central and reflex mechanisms in the control of movement [in Russian]. Nauka. [SVA, AAF, AGF]Google Scholar
Feldman, A. G. (1980a) Superposition of motor programs. I. Rhythmic forearm movements in man. Neuroscience 5:8190. [PRB]Google Scholar
Feldman, A. G. (1980b) Superposition of motor programs. II. Rapid forearm movements in man. Neuroscience 5:8190. [SVA]Google Scholar
Feldman, A. G. (1986) Once more for the equilibrium point hypothesis (Ι. model). Journal of Motor Behavior 18:1754. [aEB, GCA, AAF, AGF, SRG, MLL, NL, DJO, GJvIS, RBS]Google Scholar
Feldman, A. G., Adamovich, S. V., Ostry, D. J. & Flanagan, J. R. (1990) The origin of electromyograms - Explanations based on the point hypothesis. In: Multiple muscle systems: Biomechanics and movement organization, ed. Winters, J. & Woo, S. L.-Y.. Springer-Verlag. [SVA, AGF, GLG, SRG, NL, DJO, JBJS]Google Scholar
Feldman, J. A. & Ballard, D. H. (1982) Connectionist models and their properties. Cognitive Science 6:205–54. [aGEA]Google Scholar
Feldman, A. G. & Latash, M. L. (1982) Interaction of afferent and efferent signals underlying joint position sense: Empirical and theoretical approaches. Journal of Motor Behavior 14:174–93. [AGF]Google Scholar
Feldman, A. G. & Orlovsky, G. N. (1972) The influence of different descending systems on the tonic stretch reflex in the cat. Experimental Neurology 37:481–94. [AGF, MLL]Google Scholar
Felleman, D. J. & Van Essen, D. C. (1991) Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex 1:147. [GS]Google Scholar
Ferrell, W. R. (1980) The adequacy of stretch receptors in the cat knee joint for signalling joint angle throughout a full range of movement. Journal of Physiology (London) 299:8599. [aSCG]Google Scholar
Ferrell, W. R. (1987) The effect of acute joint distension on mechanoreceptor discharge in the knee of the cat. Quarterly Journal of Experimental Physiology 72:493–99. [aSCG]Google Scholar
Ferrell, W. R., Baxendale, R. H. Carnachan, C. & Hart, I. K. (1985) The influence of joint afferent discharge on locomotion, proprioception and activity in conscious cats. Brain Research 347:4148. [aSCG]Google Scholar
Ferrell, W. R., Gandevia, S. C. & McCIoskey, D. I. (1987) The role of joint receptors in human kinaesthesia when intramuscular receptors cannot contribute. Journal of Physiology (London) 386:6371. [aSCG]Google Scholar
Ferrell, W. R. & Smith, A. (1988) Position sense at the proximal interphalangeal joint of the human index finger. Journal of Physiology (London) 399:4961. [aSCG]Google Scholar
Ferrell, W. R. & Smith, A. (1989) The effect of loading on position sense at the proximal interphalangeal joint of the human index finger. Journal of Physiology (London) 418:145–61. [aSCG]Google Scholar
Ferrington, D. G., Nail, D. S. & Rowe, M. (1977) Human tactile detection thresholds: Modification by inputs from specific tactile receptor classes. Journal of Physiology 272:415–33. [aSCG]Google Scholar
Fetz, E. E. (1981) Neuronal activity associated with conditioned limb movements. In: Handbook of behavioral neurobiology, vol. 2: Motor coordination, ed. Towe, A. L. & Luschei, E. S.. Plenum Press. [arEEF]Google Scholar
Fetz, E. E. (1992) Dynamic neural network models of sensorimotor behavior. In: The neurobiology of neural networks, ed. Gardner, D.. MIT Press, in press. [rEEF]Google Scholar
Fetz, E. E. & Cheney, P. D. (1980) Postspike facilitation of forelimb muscle activity by primate corticomotoneuronal cells. Journal of Neurophysiology 44:751–72. [aGEA, aEEF, cSCG, AL]Google Scholar
Fetz, E. E., Cheney, P. D., Mewes, K. & Palmer, S. (1989) Control of forelimb muscle activity by populations of corticomotoneuronal and rubromotoneuronal cells. In: Peripheral control of posture and locomotion, ed. Allum, J. A. H. & Hulliger, M.. Elsevier [aGEA, aEEF]Google Scholar
Fetz, E. E., Cheney, P. D., Mewes, K. & Palmer, S. (1990) Control of forelimb muscle activity by populations of corticomotoneuronal and rubromotoneuronal cells. Progress in Brain Research 80:437–49. [rEEF]Google Scholar
Fetz, E. E. & Finocchio, D. V. (1972) Operant conditioning of isolated activity in specific muscles and precentral cells. Brain Research 40:1923. [MEI]Google Scholar
Fetz, E. E. & Finocchio, D. V. (1975) Correlations between activity of motor cortex cells and arm muscles during operantly conditioned response patterns. Experimental Brain Research 23:217–40. [aEEF, MEI]Google Scholar
Fetz, E. E., Finocchio, D. V., Baker, M. A. & Soso, M. J. (1980) Sensory and motor responses of precentral cortex cells during comparable passive and active joint movements. Journal of Neurophysiology 43:1070–89. [aEEF]Google Scholar
Fetz, E. E. & Shupe, L. E. (1990) Neural network models of the primate motor system. In: Advanced neural computers, ed. Eckmiller, R.. Elsevier/North-Holland. [aEEF]Google Scholar
Fetz, E. E., Shupe, L. E. & Murthy, V. N. (1990) Neural networks controlling wrist movements. Proceedings of the 1990 International Joint Conference on Neural Networks 2:675–79. [aGEA, aEEF]Google Scholar
Fetz, E. E., Toyama, K. & Smith, W. (1991) Synaptic interactions between cortical neurons. In: Cerebral cortex, vol. 9: Altered cortical states, ed. Peters, A. & Jones, E. G.. Plenum Press. [rEEF]Google Scholar
Fischer, B. & Rogal, L. (1986) Eye-hand-coordination in man: A reaction time study. Biological Cybernetics 55:253–61. [VD]Google Scholar
Flament, D., Fortier, P. A. & Fetz, E. E. (1992) Response patterns and postspike effects of peripheral afferents in dorsal root ganglia of behaving monkeys. Journal of Neurophysiology 67:875–89. [arEEF]Google Scholar
Flament, D. & Hore, J. (1986) Movement and electromyographic disorders associated with cerebellar dysmetria. Journal of Neurophysiology 55:1221–33. [aJRB]Google Scholar
Flanagan, J. R., Feldman, A. G. & Ostry, D. J. (1992) Equilibrium trajectories underlying rapid target-directed arm movements. In: Tutorials in motor behavior. II, ed. Stelmach, G. E. & Requin, J.. North-Holland. [DJO]Google Scholar
Flanagan, J. R., Ostry, D. J. & Feldman, A. G. (1990) Control of human jaw and multi-joint arm movements. In: Cerebral control of speech and limb movements, ed. Hammond, G. E.. Elsevier Science. [arEB, DJO]Google Scholar
Flanders, M. & Soechting, J. F. (1990) Parcellation of sensorimotor transformations for arm movements. Journal of Neuroscience 10:2420–27. [MF]Google Scholar
Flanders, M., Tillery, S. I. H. & Soechting, J. F. (1992) Early stages in a sensorimotor transformation. Behavioral and Brain Sciences 15(2):309–20. [MF, PG]Google Scholar
Flash, T. (1987) The control of hand equilibrium trajectories in multi-joint arm movements. Biological Cybernetics 57:257–74. [aEB, SVA, JDe, AAF, GEL, NL]Google Scholar
Flash, T. & Henis, E. (1991) Arm trajectory modifications during reaching towards visual targets. Journal of Cognitive Neuroscience 3:220230. [rEB]Google Scholar
Flash, T. & Hogan, N. (1985) The coordination of arm movements: An experimentally confirmed mathematical model. Journal of Neuroscience 5:16881703. [aGEA, JDe, SRG]Google Scholar
Fleshman, J. W., Munson, J. B. & Sypert, G. W. (1981) Homonymous projection of individual group Ia fibers to physiologically characterized medial gastrocnemius motoneurons in the cat. Journal of Neurophysiology 46:1339–48. [TRN]Google Scholar
Fleshman, J., Rudomin, P. & Burke, R. (1988) Supraspinal control of a shortlatency cutaneous pathway to hindlimb motoneurons. Experimental Brain Research 69:449–59. [aDAM]Google Scholar
Fodor, J. (1983) The modularity of mind. MIT Press. [GS]Google Scholar
Fogassi, L., Gallese, V., de Pellegrino, G., Fadiga, L., Gentilucci, M., Luppino, G., Matelli, M., Pedotti, A. & Rizzolatti, G. (submitted) Space coding by premotor cortex. [MSG]Google Scholar
Forget, R. & Lamarre, Y. (1987) Rapid elbow flexion in the absence of proprioceptive and cutaneous feedback. Human Neurobiology 6:2737. [aSCG, PRC]Google Scholar
Forssberg, H. (1985) Ontogeny of human locomotor control I. Infant stepping, supported locomotion and transition to independent locomotion. Experimental Brain Research 57:480–93. [VD]Google Scholar
Fortier, P. A., Kalaska, J. F. & Smith, A. M. (1989) Cerebellar neuronal activity related to whole-arm reaching movements in the monkey. Journal of Neurophysiology 62:198211. [aJRB, aEEF]Google Scholar
Fournier, E., Katz, R. & Pierrot-Deseilligny, E. (1983) Descending control of reflex pathways in the production of voluntary isolated movements in man. Brain Research 288:357–77. [aSCG]Google Scholar
Fox, C. A., Andrade, A. N., Hillman, D. E. & Schwyn, R. C. (1971) The spiny neurons in the primate striatum. A golgi and electron microscopic study. Journal für Hirnforschung 13:181201. [aGEA]Google Scholar
Fox, G. C. (1988) Solving problems with concurrent processors. Prentice Hall. [aJFS]Google Scholar
Francois, C., Percheron, G., Yelnick, J. & Heyner, S. (1984) A golgi analysis of the primate globus pallidus. I. Inconstant processes of large neurons, other neuronal types, and afferent axons. Journal of Comparative Neurology 227:182–99. [aGEA]Google Scholar
Freeman, W. J. (1987) Simulation of chaotic EEG patterns with a dynamic model of the olfactory system. Biological Cybernetics 56:139–50. [IT]Google Scholar
Freeman, W. J. (1990) Nonlinear neural dynamics in olfaction as a model for cognition. In: Chaos in brain function, ed. Basar, E.. Springer-Verlag. [TLC]Google Scholar
Freeman, W. J. & van Dijk, B. W. (1987) Spatial patterns of visual cortical fast EEG during conditioned reflex in a rhesus monkey. Brain Research 422:267–76. [aJFS]Google Scholar
Frolov, A. A., Biryukova, E. V. & Roschin, V. Y. (1992) Neural model of multijoint movement learning and control. In: Proceedings of 1992 RNNS/IEEE Symposium on Neuroinformatics and Neurocomputers, Rostov-on-Don, in press. [AAF]Google Scholar
Frolov, A. G. (1983) The effect of instrumentalization of inborn reaction on its transformation into contrary directed escape response in dogs and the problem of reinforcement. Acta Neurobiologiae Experimentalis 43:114. [MEI]Google Scholar
Fromm, C. & Evarts, E. V. (1981) Relation of size and activity of motor cortex pyramidal tract neurons during skilled movements in the monkey. Journal of Neuroscience 1:453–60. [aSCG]Google Scholar
Fu, T., Hultborn, H., Larsson, R. & Lundberg, A. (1978) Reciprocal inhibition during the tonic stretch reflex in the decerebrate cat. Journal of Physiology 284:345369. [rDAM]Google Scholar
Fujita, M. (1982) Adaptive filter model of the cerebellum. Biological Cybernetics 45:195206. [aJRB, AAF]Google Scholar
Fukami, Y. & Wilkinson, R. S. (1977) Responses of isolated Golgi tendon organs of the cat. Journal of Physiology (London) 265:673–89. [aSCG]Google Scholar
Fukson, O. I., Berkinblit, M. B. & Feldman, A. G. (1980) The spinal frog takes into account the scheme of its body during the wiping reflex. Science 209:1261–63. [aEB, SG]Google Scholar
Fukushima, K., Perlmutter, S. I., Baker, J. F. & Peterson, B. W. (1990) Spatial properties of second-order vestibulo-ocular relay neurons in the alert cat. Experimental Brain Research 81:462–78. [aDAR, CLC]Google Scholar
Fung, S. J., Pompeiano, O. & Barnes, C. C. (1988) Coerulospinal influence on recurrent inhibition of spinal motonuclei innervating antagonistic hindleg muscles of the cat. Pflugers Archiv-European Journal of Physiology 412(4):346–53. [FBH]Google Scholar
Fuster, J. M. (1985) The prefrontal cortex and temporal integration. In: The cerebral cortex, vol. 4, ed. Peters, A. & Jones, E. G.. [aEEF]Google Scholar
Fuster, J. M. (1989) The prefrontal cortex, 2nd ed. Raven Press. [JMF]Google Scholar
Gaffan, D. & Harrison, S. (1989) Place memory and scene memory effects of fomix transection in the monkey. Experimental Brain Research 74:202–12. [aJFS]Google Scholar
Galleti, C. & Battaglini, P. P. (1989) Gaze-dependent visual neurons in area {V}3a of monkey prestriate cortex. Journal of Neuroscience 9:1112–25. [APo]Google Scholar
Gandevia, S. C. (1982) The perception of motor commands or effort during muscular paralysis. Brain 105:151–59. [aSCG]Google Scholar
Gandevia, S. C. (1985) Illusory movements produced by electrical stimulation of lowthreshold muscle afferents from the hand. Brain 108:965–81. [aSCG]Google Scholar
Gandevia, S. C. (1987) Roles for perceived voluntary motor commands in motor control. Trends in Neurosciences 10:8185. [aSCG]Google Scholar
Gandevia, S. C. & Burke, D. (1985) Effect of training on voluntary activation of human fusimotor neurons. Journal of Neurophysiology 54:1422–29. [aSCG]Google Scholar
Gandevia, S. C. & Burke, D. (1988) Projection to the cerebral cortex from proximal and distal muscles in the human upper limb. Brain 111:389403. [aSCG]Google Scholar
Gandevia, S. C., Burke, D. & McKeon, B. (1984) The projection of muscle afferents from the hand to cerebral cortex in man. Brain 107:113. [aSCG]Google Scholar
Gandevia, S. C., Burke, D. & McKeon, B. (1986a) Coupling between human muscle spindle endings and motor units assessed using spike-triggered averaging. Neuroscience Letters 71:181–86. [aSCG]