Skip to main content Accessibility help
×
Home
Hostname: page-component-747cfc64b6-ngm8v Total loading time: 1.204 Render date: 2021-06-17T05:58:24.934Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Beyond disjoint brain networks: Overlapping networks for cognition and emotion

Published online by Cambridge University Press:  30 June 2016

Luiz Pessoa
Affiliation:
Department of Psychology, University of Maryland, College Park, MD 20742. pessoa@umd.edu http://www.emotioncognition.org
Corresponding
E-mail address:

Abstract

It is taken for granted that the brain is composed of a set of networks. But what is a brain network? How should we characterize them? Adding to Anderson's (2014) persuasive anti-modular framework, I propose that (1) networks do not have a single, unique function; (2) networks are highly overlapping and not disjoint; and (3) tasks reconfigure networks found at rest.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below.

References

Anderson, M. L. (2014) After phrenology: Neural reuse and the interactive brain. MIT Press.Google Scholar
Bressler, S. L. & Menon, V. (2010) Large-scale brain networks in cognition: Emerging methods and principles. Trends in Cognitive Sciences 14:277–90.CrossRefGoogle ScholarPubMed
Buckner, R. L., Krienen, F. M. & Yeo, B. T. (2013) Opportunities and limitations of intrinsic functional connectivity MRI. Nature Neuroscience 16:832–37.CrossRefGoogle ScholarPubMed
Cacioppo, J. T. & Tassinary, L. G. (1990) Inferring psychological significance from physiological signals. American Psychologist 45:1628.CrossRefGoogle ScholarPubMed
Choi, J. M., Padmala, S. & Pessoa, L. (2012) Impact of state anxiety on the interaction between threat monitoring and cognition. NeuroImage 59:1912–23.CrossRefGoogle ScholarPubMed
Cocchi, L., Zalesky, A., Fornito, A. & Mattingley, J. B. (2013) Dynamic cooperation and competition between brain systems during cognitive control. Trends in Cognitive Sciences 17:493501.CrossRefGoogle ScholarPubMed
Cole, M. W., Bassett, D. S., Power, J. D., Braver, T. S. & Petersen, S. E. (2014) Intrinsic and task-evoked network architectures of the human brain. Neuron 83:238–51.CrossRefGoogle ScholarPubMed
Cole, M. W., Reynolds, J. R., Power, J. D., Repovs, G., Anticevic, A. & Braver, T. S. (2013) Multi-task connectivity reveals flexible hubs for adaptive task control. Nature Neuroscience 16(9):1348–55.CrossRefGoogle ScholarPubMed
Damaraju, E., Huang, Y. M., Barrett, L. F. & Pessoa, L. (2009) Affective learning enhances activity and functional connectivity in early visual cortex. Neuropsychologia 47:2480–87.CrossRefGoogle ScholarPubMed
Gavin, A.-C., Bösche, M., Krause, R., Grandi, P., Marzioch, M., Bauer, A., Schultz, J., Rick, J. M., Michon, A.-M. & Cruciat, C.-M. (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415:141–47.CrossRefGoogle ScholarPubMed
Hilgetag, C. C., O'Neill, M. A. & Young, M. P. (1996) Indeterminate organization of the visual system. Science 271:776–77.CrossRefGoogle ScholarPubMed
Kinnison, J., Padmala, S., Choi, J. M. & Pessoa, L. (2012) Network analysis reveals increased integration during emotional and motivational processing. Journal of Neuroscience 32:8361–72.CrossRefGoogle ScholarPubMed
Menon, V. & Uddin, L. Q. (2010) Saliency, switching, attention and control: A network model of insula function. Brain Structure and Function 214:655–67.CrossRefGoogle ScholarPubMed
Mesulam, M. M. (1998) From sensation to cognition. Brain 121:1013–52.CrossRefGoogle Scholar
Newman, M. (2010) Networks: An introduction. Oxford University Press.CrossRefGoogle Scholar
Padmala, S. & Pessoa, L. (2011) Reward reduces conflict by enhancing attentional control and biasing visual cortical processing. Journal of Cognitive Neuroscience 23:3419–32.CrossRefGoogle ScholarPubMed
Palla, G., Derenyi, I., Farkas, I. & Vicsek, T. (2005) Uncovering the overlapping community structure of complex networks in nature and society. Nature 435:814–18.CrossRefGoogle ScholarPubMed
Pessoa, L. (2009) How do emotion and motivation direct executive function? Trends in Cognitive Sciences 13:160–66.CrossRefGoogle Scholar
Pessoa, L. (2013) The cognitive-emotional brain: From interactions to integration. MIT Press.CrossRefGoogle Scholar
Pessoa, L. (2014) Understanding brain networks and brain organization. Physics of Life Reviews 11:400–35.CrossRefGoogle ScholarPubMed
Pessoa, L., McKenna, M., Gutierrez, E. & Ungerleider, L. G. (2002) Neural processing of emotional faces requires attention. Proceedings of the National Academy of Sciences USA 99:11458–63.CrossRefGoogle ScholarPubMed
Rissman, J., Gazzaley, A. & D'Esposito, M. (2004) Measuring functional connectivity during distinct stages of a cognitive task. NeuroImage 23:752–63.CrossRefGoogle ScholarPubMed
Yeo, B. T., Krienen, F. M., Chee, M. W. & Buckner, R. L. (2014) Estimates of segregation and overlap of functional connectivity networks in the human cerebral cortex. NeuroImage 88:212–27.CrossRefGoogle ScholarPubMed
Yeo, B. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., Roffman, J. L., Smoller, J. W., Zollei, L., Polimeni, J. R., Fischl, B., Liu, H. & Buckner, R. L. (2011) The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology 106:1125–65.Google ScholarPubMed

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Beyond disjoint brain networks: Overlapping networks for cognition and emotion
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Beyond disjoint brain networks: Overlapping networks for cognition and emotion
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Beyond disjoint brain networks: Overlapping networks for cognition and emotion
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *