Hostname: page-component-cd4964975-96cn4 Total loading time: 0 Render date: 2023-03-27T12:00:40.631Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

APPLICATION OF PROJECTION ALGORITHMS TO DIFFERENTIAL EQUATIONS: BOUNDARY VALUE PROBLEMS

Published online by Cambridge University Press:  18 February 2019

BISHNU P. LAMICHHANE
Affiliation:
Priority Research Centre for Computer-Assisted Research Mathematics and its Applications (CARMA), University of Newcastle, New South Wales, Australia email bishnu.lamichhane@newcastle.edu.au, scott.lindstrom@uon.edu.au, brailey.sims@newcastle.edu.au
SCOTT B. LINDSTROM*
Affiliation:
Priority Research Centre for Computer-Assisted Research Mathematics and its Applications (CARMA), University of Newcastle, New South Wales, Australia email bishnu.lamichhane@newcastle.edu.au, scott.lindstrom@uon.edu.au, brailey.sims@newcastle.edu.au
BRAILEY SIMS
Affiliation:
Priority Research Centre for Computer-Assisted Research Mathematics and its Applications (CARMA), University of Newcastle, New South Wales, Australia email bishnu.lamichhane@newcastle.edu.au, scott.lindstrom@uon.edu.au, brailey.sims@newcastle.edu.au

Abstract

The Douglas–Rachford method has been employed successfully to solve many kinds of nonconvex feasibility problems. In particular, recent research has shown surprising stability for the method when it is applied to finding the intersections of hypersurfaces. Motivated by these discoveries, we reformulate a second order boundary value problem (BVP) as a feasibility problem where the sets are hypersurfaces. We show that such a problem may always be reformulated as a feasibility problem on no more than three sets and is well suited to parallelization. We explore the stability of the method by applying it to several BVPs, including cases where the traditional Newton’s method fails.

Type
Research Article
Copyright
© 2019 Australian Mathematical Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aragón Artacho, F. J. and Borwein, J. M., “Global convergence of a non-convex Douglas–Rachford iteration”, J. Global Optim. 57 (2013) 753769; doi:10.1007/s10898-012-9958-4.CrossRefGoogle Scholar
Aragón Artacho, F. J., Borwein, J. M. and Tam, M. K., “Recent results on Douglas–Rachford methods for combinatorial optimization problems”, J. Optim. Theory Appl. 163 (2014) 130; doi:10.1007/s10957-013-0488-0.CrossRefGoogle Scholar
Aragón Artacho, F. J., Borwein, J. M. and Tam, M. K., “Douglas–Rachford feasibility methods for matrix completion problems”, ANZIAM J. 55 (2014) 299326; doi:10.1017/S1446181114000145.Google Scholar
Aragón Artacho, F. J. and Campoy, R., “Solving graph coloring problems with the Douglas–Rachford algorithm”, Set-Valued Var. Anal. 26 (2018) 277304; doi:10.1007/s11228-017-0461-4.CrossRefGoogle Scholar
Bauschke, H. H. and Combettes, P. L., Convex analysis and monotone operator theory in Hilbert spaces, 2nd edn (Springer, Cham, 2017); doi:10.1007/978-3-319-48311-5.CrossRefGoogle Scholar
Bauschke, H. H., Combettes, P. L. and Luke, D. R., “Phase retrieval, error reduction algorithm, and Fienup variants: a view from convex optimization”, J. Opt. Soc. Amer. A 19 (2002) 13341345; doi:10.1364/JOSAA.19.001334.CrossRefGoogle ScholarPubMed
Benoist, J., “The Douglas–Rachford algorithm for the case of the sphere and the line”, J. Global Optim. 63 (2015) 363380; doi:10.1007/s10898-015-0296-1.CrossRefGoogle Scholar
Borwein, J. M., Lindstrom, S. B., Sims, B., Schneider, A. and Skerritt, M. P., “Dynamics of the Douglas–Rachford method for ellipses and $p$ -spheres”, Set-Valued Var. Anal. 26 (2018) 385403; doi:10.1007/s11228-017-0457-0.CrossRefGoogle Scholar
Borwein, J. M. and Sims, B., “The Douglas–Rachford algorithm in the absence of convexity”, in: Fixed-point algorithms for inverse problems in science and engineering, Volume 49 of Springer Optim. Appl. (Springer, New York, 2011) 93109; doi:10.1007/978-1-4419-9569-8_6.CrossRefGoogle Scholar
Borwein, J. M. and Tam, M. K., “Reflection methods for inverse problems with applications to protein conformation determination”, Springer volume on the CIMPA school Generalized Nash equilibrium problems, bilevel programming and MPEC, New Delhi, India, December 2012; doi:10.1007/978-981-10-4774-9_5.CrossRefGoogle Scholar
Borwein, J. M. and Tam, M. K., “A cyclic Douglas–Rachford iteration scheme”, J. Optim. Theory Appl. 160 (2014) 129; doi:10.1007/s10957-013-0381-x.CrossRefGoogle Scholar
Burden, R. L., Faires, D. J. and Burden, A. M., Numerical analysis (Cengage Learning, Boston, MA, 2016).Google Scholar
Dao, M. N. and Phan, H. M., “Linear convergence of projection algorithms”, Preprint, 2016,arXiv:1609.00341.Google Scholar
Dao, M. N. and Tam, M. K., “A Lyapunov-type approach to convergence of the Douglas–Rachford algorithm”, J. Global Optim. 73 (2019) 83112; doi:10.1007/s10898-018-0677-3.CrossRefGoogle Scholar
Douglas, J. and Rachford, H. H., “On the numerical solution of the heat conduction problem in 2 and 3 space variables”, Trans. Amer. Math. Soc. 82 (1956) 421439; doi:10.2307/1993056.CrossRefGoogle Scholar
Elser, V., Rankenburg, I. and Thibault, P., “Searching with iterated maps”, Proc. Natl. Acad. Sci. USA 104 (2007) 418423; doi:10.1073/pnas.0606359104.CrossRefGoogle ScholarPubMed
Gravel, S. and Elser, V., “Divide and concur: a general approach to constraint satisfaction”, Phys. Rev. E 78 (2008) 036706; doi:10.1103/PhysRevE.78.036706.CrossRefGoogle ScholarPubMed
Keller, H. B., Numerical methods for two-point boundary value problems (Blaisdell, Waltham, MA, 1968).Google Scholar
Lewis, A. S., Luke, D. R. and Malick, J., “Local linear convergence for alternating and averaged nonconvex projections”, Found. Comput. Math. 9 (2009) 485513; doi:10.1007/s10208-008-9036-y.CrossRefGoogle Scholar
Lindstrom, S. B. and Sims, B., “Survey: sixty years of Douglas–Rachford”, Preprint, 2018,arXiv:1809.07181.Google Scholar
Lindstrom, S. B., Sims, B. and Skerritt, M. P., “Computing intersections of implicitly specified plane curves”, J. Nonlinear Convex Anal. 18 (2017) 347359; http://www.ybook.co.jp/online2/opjnca/vol18/p347.html.Google Scholar
Lions, P. L. and Mercier, B., “Splitting algorithms for the sum of two nonlinear operators”, SIAM J. Numer. Anal. 16 (1979) 964979; doi:10.1137/0716071.CrossRefGoogle Scholar
Phan, H. M., “Linear convergence of the Douglas–Rachford method for two closed sets”, Optimization 65 (2016) 369385; doi:10.1080/02331934.2015.1051532.CrossRefGoogle Scholar
Pierra, G., “Decomposition through formalization in a product space”, Math. Program. 28 (1984) 96115; https://link.springer.com/article/10.1007/BF02612715.CrossRefGoogle Scholar
Roberts, A. W. and Varberg, D. E., Convex functions (Academic Press, New York, 1973).Google Scholar
Svaiter, B. F., “On weak convergence of the Douglas–Rachford method”, SIAM J. Control Optim. 49 (2011) 280287; doi:10.1137/100788100.CrossRefGoogle Scholar
Weisstein, E. W., “Heaviside step function”, Wolfram MathWorld, Wolfram Web Resources; http://mathworld.wolfram.com/HeavisideStepFunction.html.Google Scholar