Skip to main content Accessibility help
×
Home
Hostname: page-component-7ccbd9845f-4v6tc Total loading time: 0.499 Render date: 2023-01-28T17:11:59.564Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Article contents

Removing contaminants: a restatement of the value of isolating single compounds for AMS dating

Published online by Cambridge University Press:  12 August 2019

Thomas F.G. Higham*
Affiliation:
Oxford Radiocarbon Accelerator Unit, Research Laboratory for Archaeology & the History of Art, University of Oxford, Oxford OX1 3QY, UK (Email: thomas.higham@rlaha.ox.ac.uk)

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Debate
Information
Antiquity , Volume 93 , Issue 370 , August 2019 , pp. 1072 - 1075
Copyright
Copyright © Antiquity Publications Ltd, 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Becerra-Valdivia, L., Waters, M.R., Stafford, T.W. Jr, Comeskey, D., Devièse, T. & Higham, T.F.G.. 2018. Reassessing the chronology of the archaeological site of Anzick. Proceedings of the National Academy of Sciences of the USA 115: 70007003. https://doi.org/10.1073/pnas.1803624115CrossRefGoogle ScholarPubMed
Bourrillon, R. et al. 2018. A new Aurignacian engraving from Abri Blanchard, France: implications for understanding Aurignacian graphic expression in Western and Central Europe. Quaternary International 491: 4664. https://doi.org/10.1016/j.quaint.2016.09.063CrossRefGoogle Scholar
Devièse, T. et al. 2017. Direct dating of Neanderthal remains from the site of Vindija Cave and implications for the Middle to Upper Paleolithic transition. Proceedings of the National Academy of Sciences of the USA 114: 10606–11. https://doi.org/10.1073/pnas.1709235114CrossRefGoogle ScholarPubMed
Devièse, T., Comeskey, D., McCullagh, J., Ramsey, C.B. & Higham, T.F.G.. 2018a. New protocol for compound-specific radiocarbon analysis of archaeological bones. Rapid Communications in Mass Spectrometry 32: 373–79. https://doi.org/10.1002/rcm.8047CrossRefGoogle Scholar
Devièse, T., Stafford, T.W., Waters, M.R., Wathen, C., Comeskey, D., Becerra-Valdivia, L. & Higham, T.F.G.. 2018b. Increasing accuracy for the radiocarbon dating of sites occupied by the first Americans. Quaternary Science Reviews 198: 171–80. https://doi.org/10.1016/j.quascirev.2018.08.023CrossRefGoogle Scholar
Devièse, T. et al. 2019. Compound-specific radiocarbon dating and mitochondrial DNA analysis of the Pleistocene hominin from Salkhit Mongolia. Nature Communications 10: 274. https://doi.org/10.1038/s41467-018-08018-8CrossRefGoogle ScholarPubMed
Dinnis, R., Bessudnov, A., Reynolds, N., Devièse, T., Pate, A., Sablin, M., Sinitsyn, A. & Higham, T.F.G.. 2018. New data for the Early Upper Paleolithic of Kostenki (Russia). Journal of Human Evolution 127: 2140. https://doi.org/10.1016/j.jhevol.2018.11.012CrossRefGoogle Scholar
Higham, T.F.G. 2011. European Middle and Upper Palaeolithic radiocarbon dates are often older than they look: problems with previous dates and some remedies. Antiquity 85: 235–49. https://doi.org/10.1017/S0003598X00067570CrossRefGoogle Scholar
Kosintsev, P. et al. 2019. Evolution and extinction of the giant rhinoceros Elasmotherium sibiricum sheds light on Late Quaternary megafaunal extinctions. Nature Ecology & Evolution 3: 3138. https://doi.org/10.1038/s41559-018-0722-0CrossRefGoogle ScholarPubMed
Krause, J. et al. 2007. Neanderthals in Central Asia and Siberia, Nature 449: 902904. https://doi.org/10.1038/nature06193CrossRefGoogle ScholarPubMed
Kuzmin, Y.V. 2019. The older, the better? On the radiocarbon dating of Upper Palaeolithic burials in Northern Eurasia and beyond. Antiquity 93: 1061–71. https://doi.org/10.15184/aqy.2018.158CrossRefGoogle Scholar
Marom, A. et al. 2012. Single amino acid radiocarbon dating of Upper Palaeolithic modern humans. Proceedings of the National Academy of Sciences of the USA 109: 6878–81. https://doi.org/10.1073/pnas.1116328109CrossRefGoogle Scholar
Marom, A., McCullagh, J.S.O., Higham, T.F.G. & Hedges, R.E.M.. 2013. Hydroxyproline dating: experiments on the 14C analysis of contaminated and low-collagen bones. Radiocarbon 55: 698708. https://doi.org/10.1017/S0033822200057854CrossRefGoogle Scholar
McColl, H. et al. 2018. The prehistoric peopling of Southeast Asia. Science 361: 8892. https://doi.org/10.1126/science.aat3628CrossRefGoogle ScholarPubMed
Moreno-Mayar, J. et al. 2018. Early human dispersals within the Americas. Science https://doi.org/10.1126/science.aav2621CrossRefGoogle ScholarPubMed
Nalawade-Chavan, S., McCullagh, J. & Hedges, R.. 2013. New hydroxyproline radiocarbon dates from Sungir, Russia, confirm early Mid Upper Palaeolithic burials in Eurasia. PLoS ONE 9: e76896. https://doi.org/10.1371/journal.pone.0076896Google Scholar
Reynolds, N., Dinnis, R., Bessudnov, A.A., Devièse, T. & Higham, T.F.G.. 2017. The Kostënki 18 child burial and the cultural and funerary landscape of Mid Upper Palaeolithic European Russia. Antiquity 91:1435–50. https://doi.org/10.15184/aqy.2017.150CrossRefGoogle Scholar
Sikora, M. et al. 2017. Ancient genomes show social and reproductive behavior of early Upper Paleolithic foragers. Science 358: 659–62. https://doi.org/10.1126/science.aao1807CrossRefGoogle ScholarPubMed
11
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Removing contaminants: a restatement of the value of isolating single compounds for AMS dating
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Removing contaminants: a restatement of the value of isolating single compounds for AMS dating
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Removing contaminants: a restatement of the value of isolating single compounds for AMS dating
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *