Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-25T00:14:48.637Z Has data issue: false hasContentIssue false

Satellite-derived UV climatology at Escudero Station, Antarctic Peninsula

Published online by Cambridge University Press:  28 March 2013

Raul R. Cordero*
Affiliation:
Universidad de Santiago de Chile, Ave Bernardo O'Higgins 3363, Santiago, Chile
Alessandro Damiani
Affiliation:
Universidad de Santiago de Chile, Ave Bernardo O'Higgins 3363, Santiago, Chile
Gunther Seckmeyer
Affiliation:
Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
Stefan Riechelmann
Affiliation:
Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
Fernando Labbe
Affiliation:
Universidad Técnica Federico Santa María, Ave España 1680, Valparaíso, Chile
David Laroze
Affiliation:
Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica, Chile Max Planck Institute, 55021 Mainz, Germany
Fernanda Garate
Affiliation:
Universidad de Santiago de Chile, Ave Bernardo O'Higgins 3363, Santiago, Chile

Abstract

We have used data from the Ozone Monitoring Instrument (OMI) aboard NASA's Earth Observing System (EOS) Aura satellite over the period 2004–11 to describe the characteristics of surface ultraviolet (UV) irradiance at Escudero Station (62°12′S, 58°57′W). The station is located on King George Island (northern Antarctic Peninsula). Temperatures in summer are frequently above 0°C, and the surrounding ocean is typically ice-free. We found that the UV irradiance at Escudero is driven by the Antarctic ozone hole (which annually in spring leads to significant variations in the ozone) and by clouds (which are more frequent and have a larger optical depth compared with other Antarctic sites). The combined effect of ozone and clouds led to significant variations in the surface UV. The variability (taken as the standard deviation of the UV estimates retrieved from OMI) is typically greater than 30% at Escudero, but may reach values greater than 50% in spring. The consistency of OMI-derived data was checked by using ground-based spectral measurements carried out under controlled conditions in January 2011.

Type
Physical Sciences
Copyright
Copyright © Antarctic Science Ltd 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angiel, P.J., Potocki, M. Biszczuk-Jakubowska, J. 2010. Weather condition characteristics at the H. Arctowski Station (South Shetland Islands, Antarctica) for 2006, in comparison with multi-year research results. Miscellanea Geographica, 14, 7989.CrossRefGoogle Scholar
Bernhard, G., Booth, C.R. Ehramjian, J.C. 2004. Version 2 data of the National Science Foundation's Ultraviolet Radiation Monitoring Network: South Pole. Journal of Geophysical Research, 10.1029/2004JD004937.CrossRefGoogle Scholar
Bernhard, G., Booth, C.R. Ehramjian, J.C. 2005. UV climatology at Palmer Station, Antarctica. In Bernhard, G., Slusser, J.R., Herman, J.R. & Gao, W., eds. Ultraviolet ground- and space-based measurements, models, and effects V. Proceedings of the Society of Photo-optical Instrumentation Engineers. Bellingham, WA: SPIE, 322 pp.Google Scholar
Bernhard, G., Booth, C.R. Ehramjian, J.C. 2010. Climatology of ultraviolet radiation at high latitudes derived from measurements of the National Science Foundation's Ultraviolet Spectral Irradiance Monitoring Network. In Gao, W., Schmoldt, D.L. & Slusser, J.R., eds. UV radiation in global climate change: measurements, modelling and effects on ecosystems. New York: Springer, 550 pp.Google Scholar
Bernhard, G., Booth, C.R. McPeters, R.D. 2003. Calculation of total column ozone from global UV spectra at high latitudes. Journal of Geophysical Research, 10.1029/2003JD003450.CrossRefGoogle Scholar
Bernhard, G., Booth, C.R., Ehramjian, J.C. Nichol, S.E. 2006. UV climatology at McMurdo Station, Antarctica, based on version 2 data of the National Science Foundation's Ultraviolet Radiation Monitoring Network. Journal of Geophysical Research, 10.1029/2005JD005857.CrossRefGoogle Scholar
Buchard, V., Brogniez, C., Auriol, F., Bonnel, B., Lenoble, J., Tanskanen, A., Bojkov, B. Veefkind, P. 2008. Comparison of OMI ozone and UV irradiance data with ground-based measurements at two French sites. Atmospheric Chemistry and Physics, 8, 45174528.CrossRefGoogle Scholar
Choi, T., Lee, B.Y., Kim, S.J., Yoon, Y.J. Lee, H.C. 2008. Net radiation and turbulent energy exchanges over a nonglaciated coastal area on King George Island during four summer seasons. Antarctic Science, 20, 99112.CrossRefGoogle Scholar
Cordero, R.R., Seckmeyer, G., Pissulla, D., DaSilva, L. Labbe, F. 2007. Uncertainty evaluation of the spectral UV irradiance evaluated by using the UVSPEC Radiative Transfer Model. Optics Communications, 276, 4453.CrossRefGoogle Scholar
Cordero, R.R., Seckmeyer, G., Pissulla, D., DaSilva, L. Labbe, F. 2008. Uncertainty evaluation of spectral UV irradiance measurements. Measurement Science and Technology, 19, 115.CrossRefGoogle Scholar
Dahlback, A. Stamnes, K. 1991. A new spherical model for computing the radiation field available for photolysis and heating at twilight. Planetary and Space Science, 39, 671683.CrossRefGoogle Scholar
Damiani, A., De Simone, S., Rafanelli, C., Cordero, R.R. Laurenza, M. 2012. Three years of ground-based total ozone measurements in Arctic: comparison with OMI, GOME and SCIAMACHY satellite data. Remote Sensing of Environment, 27, 162180.CrossRefGoogle Scholar
Farman, J.C., Gardiner, B.G. Shanklin, J.D. 1985. Large losses of total ozone in Antarctica reveal seasonal C1Ox/NOx interaction. Nature, 315, 207210.CrossRefGoogle Scholar
Flemming, J., Inness, A., Jones, L., Eskes, H.J., Huijnen, V., Schultz, M.G., Stein, O., Cariolle, D., Kinnison, D. Brasseur, G. 2011. Forecasts and assimilation experiments of the Antarctic ozone hole 2008. Atmospheric Chemistry and Physics, 11, 19611977.CrossRefGoogle Scholar
Gröbner, J., Blumthaler, M., Kazadzis, S., Bais, A., Webb, A., Schreder, J., Seckmeyer, G. Rembges, D. 2006. Quality assurance of spectral solar UV measurements: result from 25 UV monitoring sites in Europe, 2002 to 2004. Metrologia, 43, S66S71.CrossRefGoogle Scholar
Grooß, J.-U., Brautzsch, K., Pommrich, R., Solomon, S. Müller, R. 2011. Stratospheric ozone chemistry in the Antarctic: what determines the lowest ozone values reached and their recovery? Atmospheric Chemistry and Physics, 11, 12 21712 226.CrossRefGoogle Scholar
Gueymard, C.A. 2004. The sun's total and spectral irradiance for solar energy applications and solar radiation models. Solar Energy, 76, 423453.CrossRefGoogle Scholar
Ialongo, I., Arola, A., Kujanpää, J. Tamminen, J. 2011. Use of satellite erythemal UV products in analysing the global UV changes. Atmospheric Chemistry and Physics, 11, 96499658.CrossRefGoogle Scholar
Krotkov, N.A., Herman, J.R., Bhartia, P.K., Fioletov, V. Ahmad, Z. 2001. Satellite estimation of spectral surface UV irradiance 2. Effects of homogeneous clouds and snow. Journal of Geophysical Research, 106, 11 74311 759.CrossRefGoogle Scholar
Kuttippurath, J., Goutail, F., Pommereau, J.-P., Lefèvre, F., Roscoe, H.K., Pazmiño, A., Feng, W., Chipperfield, M.P. Godin-Beekmann, S. 2010. Estimation of Antarctic ozone loss from ground-based total column measurements. Atmospheric Chemistry and Physics, 10, 65696581.CrossRefGoogle Scholar
Laska, K., Budik, L., Budikova, M. Prosek, P. 2011. Method of estimation of solar UV radiation in high latitude location based on satellite ozone retrieval with improved algorithm. International Journal of Remote Sensing, 32, 31653177.CrossRefGoogle Scholar
Laska, K., Prosek, P., Budik, L., Budikova, M. Milinevsky, G. 2010. Estimation of solar UV radiation in Maritime Antarctica using nonlinear model including cloud effects. International Journal of Remote Sensing, 31, 831849.CrossRefGoogle Scholar
Mayer, B. Kylling, A. 2005. Technical note: the libRadtran software package for radiative transfer calculations - description and examples of use. Atmospheric Chemistry and Physics, 5, 18551877.CrossRefGoogle Scholar
Mayer, B., Kylling, A., Madronich, S. Seckmeyer, G. 1998. Enhanced absorption of UV radiation due to multiple scattering in clouds: experimental evidence and theoretical explanation. Journal of Geophysical Research, 103, 31 24131 254.CrossRefGoogle Scholar
McKinlay, A.F. Diffey, B.L. 1987. A reference action spectrum for ultraviolet induced erythema in human skin. Commission Internationale de l'Eclairage Journal, 6, 1722.Google Scholar
Newman, P.A., Nash, E.R., Kawa, S.R., Montzka, S.A. Schauffler, S.M. 2006. When will the Antarctic ozone hole recover? Geophysical Research Letters, 10.1029/2005GL025232.CrossRefGoogle Scholar
Seckmeyer, G., Erb, R. Albold, A. 1996. Transmittance of a cloud is wavelength-dependent in the UV range. Geophysical Research Letters, 23, 27532755.CrossRefGoogle Scholar
Seckmeyer, G., Bais, A., Bernhard, G., Blumthaler, M., Booth, C.R., Disterhoft, P., Eriksen, P., McKenzie, R.L., Miyauchi, M. Roy, C. 2001. Instruments to measure solar ultraviolet radiation. Part 1. Spectral instruments. WMO-GAW Report No. 125. Geneva: World Meteorological Organization, 30 pp.Google Scholar
Seckmeyer, G., Pissulla, D., Glandorf, M. et al. 2008. Variability of UV irradiance in Europe. Photochemistry and Photobiology, 84, 172179.CrossRefGoogle Scholar
Stamnes, K., Slusser, J. Bowen, M. 1991. Derivation of total ozone abundance and cloud effects from spectral irradiance measurements. Applied Optics, 30, 44184426.CrossRefGoogle ScholarPubMed
Tanskanen, A. 2004. Lambertian surface albedo climatology at 360 nm from TOMS data using moving time-window technique. Proceedings of the XX Quadrennial Ozone Symposium, 1–8 June 2004, Kos, Greece, 11591160.Google Scholar
Tanskanen, A. Manninen, T. 2007b. Effective UV surface albedo of seasonally snow-covered lands. Atmospheric Chemistry and Physics, 7, 27592764.CrossRefGoogle Scholar
Tanskanen, A., Krotkov, N.A., Herman, J.R. Arola, A. 2006. Surface ultraviolet irradiance from OMI. IEEE Transactions on Geoscience and Remote Sensing, 44, 12671271.CrossRefGoogle Scholar
Tanskanen, A., Lindfors, A., Määttä, A. et al. 2007a. Validation of daily erythemal doses from Ozone Monitoring Instrument with ground-based UV measurement data. Journal of Geophysical Research, 10.1029/2007JD008830.Google Scholar
Weihs, P., Blumthaler, M., Rieder, H.E., Kreuter, A., Simic, S., Laube, W., Schmalwieser, A.W., Wagner, J.E. Tanskanen, A. 2008. Measurements of UV irradiance within the area of one satellite pixel. Atmospheric Chemistry and Physics, 8, 56155626.CrossRefGoogle Scholar
WHO (World Health Organization). 2002. Global solar UV index: a practical guide. Geneva: World Health Organization, 18 pp.Google Scholar
WMO (World Meteorological Organization). 2011. Scientific assessment of ozone depletion: 2010. Global Ozone Research and Monitoring Project-Report No. 52. Geneva: World Meteorological Organization, 516 pp.Google Scholar
Wuttke, S., Seckmeyer, G. Koenig-Langlo, G. 2006. Measurements of spectral snow albedo at Neumayer, Antarctica. Annals of Geophysics, 24, 721.CrossRefGoogle Scholar