Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-19T12:40:27.968Z Has data issue: false hasContentIssue false

Patterns of moss richness in Admiralty Bay, King George Island, cannot be explained by geological or ornithogenic drivers alone

Published online by Cambridge University Press:  08 April 2022

Bárbara Guedes Costa Silva*
Affiliation:
University of Brasilia, Brasilia, Brazil
Peter Convey
Affiliation:
British Antarctic Survey, Cambridge, UK University of Johannesburg, Johannesburg, South Africa
Micheline Carvalho-Silva
Affiliation:
University of Brasilia, Brasilia, Brazil
Eduardo Toledo Amorim
Affiliation:
Centro Nacional de Conservação da Flora - Jardim Botânico do Rio de Janeiro (CNCFlora - JBRJ), Brazil
Jairo Patiño
Affiliation:
Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA), Consejo Superior de Investigaciones Científicas (IPNA-CSIC), Tenerife, Canary Islands, Spain Department of Botany, Ecology and Plant Physiology, University of La Laguna, Tenerife, Canary Islands, Spain
Paulo Eduardo Aguiar Saraiva Câmara
Affiliation:
University of Brasilia, Brasilia, Brazil

Abstract

We set out to document the diversity and distribution of bryophytes in Admiralty Bay and thereby enable the identification of patterns in local diversity and their possible drivers. Combining data extracted from different sources and recent collections, we documented the presence of 63 species. Similarity analyses of moss species diversity in relation to underlying geology and ornithogenic influence identified an identical cophenetic correlation coefficient of 0.744 for both factors. The Sørensen index was < 0.6, indicating that the groups share < 60% of the species recorded. The data showed that the selected filters (ornithogenic soils, non-ornithogenic soils and different geological extracts) did not underlie consistent species groupings, and we conclude that other environmental and topographical factors are likely to be responsible for shaping the moss community structure in Admiralty Bay. To enable effective management of Antarctic Specially Managed Area (ASMA) No. 1 and Antarctic Specially Protected Area (ASPA) No. 128, robust assessments of the local ecosystem and biodiversity are necessary to assist in the decision-making processes mandated under the Antarctic Treaty System, one of whose founding principles is the preservation of the Antarctic ecosystem.

Type
Biological Sciences
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of Antarctic Science Ltd.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allison, J.S. & Smith, R.I.L. 1973. The vegetation of Elephant Island, South Shetland Islands. British Antarctic Survey Bulletin, 33–34, 185212.Google Scholar
Amesbury, M.J., Roland, T.P, Royles, J., Hodgson, D.A., Convey, P., Griffiths, H. & Charman, D.J. 2017. Widespread biological response to rapid warming on the Antarctic Peninsula. Current Biology, 27, 16161622.CrossRefGoogle ScholarPubMed
Arigony-Neto, J. 2006. Monitoring glacier parameters on the Antarctica Peninsula. Doctoral thesis, University of Freiburg, Faculty of Florest and Enviromental Science, 136 pp.Google Scholar
Barton, C.M. 1965. The geology of South Shetland Islands. III. The stratigraphy of King George Island. British Antarctic Survey Scientific Reports, 44, 133.Google Scholar
Belyea, L.R. & Lancaster, J. 1999. Assembly rules within a contingent ecology. Oikos, 86, 402416.CrossRefGoogle Scholar
Biersma, E.M., Jackson, J., Hyvönen, J., Koskinen, S., Linse, K., Griffiths, H. & Convey., P. 2017. Global movements in bipolar moss species. Royal Society Open Science, 4, 170147.CrossRefGoogle Scholar
Bintanja, R. 1995. The local surface energy balance of the Ecology Glacier, King George Island, Antarctica: measurements and modelling. In Bintanja, R., ed. The Antarctic ice sheet and climate. Utrecht: Utrecht University, 4159.Google Scholar
Birkenmajer, K. 1980. Report on geological investigations of King George Island, South Shetlands Islands (west Antarctica) in 1978/79. Studia Geologica Polonica, 66, 89105.Google Scholar
Block, W., Smith, R.I.L. & Kennedy, A.D. 2009. Strategies of survival and resource exploitation in the Antarctic fellfield ecosystem. Biological Reviews, 3, 449484.CrossRefGoogle Scholar
Bokhorst, S., Convey, P. & Aerts, R. 2019. Nitrogen inputs by marine vertebrates drive abundance and richness in Antarctic terrestrial ecosystems. Current Biology, 29, 10.1016/j.cub.2019.04.038.CrossRefGoogle ScholarPubMed
Booth, B.D. & Swanton, C.J. 2002. Assembly theory applied to weed communities. 50th Anniversary. Invited Article. Weed Science, 50, 213.CrossRefGoogle Scholar
Brooks, S.T., Jabour, J., van den Hoff, J. & Bergstrom, D.M. 2019. Our footprint on Antarctica competes with nature for rare ice-free land. Nature Sustainability, 2, 185190.CrossRefGoogle Scholar
Buck, W.R. & Goffinet, B. 2000. Morphology and classification of mosses. In Goffient, B. & Shaw, A.J., eds. Bryophyte biology. Cambridge: Cambridge University Press, 71123.CrossRefGoogle Scholar
Burton-Johnson, A., Black, M., Fretwell, P.T. & Kaluza-Gilbert, J. 2016. An automated methodology for differentiating rock from snow, clouds and sea in Antarctica from Landsat 8 imagery: a new rock outcrop map and area estimation for the entire Antarctic continent. The Cryosphere, 10, 16651677.CrossRefGoogle Scholar
Câmara, P.E.A.S, Valente, D.V., de Amorim, E.T., Henriques, D.K., Carvalho-Silva, M., Convey, P. & Stech, M. 2019. Integrated analysis of intraspecific diversity in the bipolar moss Roaldia revoluta (Mitt.) P.E.A.S. Câmara & M. Carvalho-Silva (Bryophyta) in Antarctica. Polar Biology, 42, 485496.CrossRefGoogle Scholar
Cañadas, E.S. 2001. Espacios protegidos y politica territorial en la isla Shetland del Sur, Antártida. Boletín de la A.G.E., 1, 521.Google Scholar
Cannone, N., Dalle Fratte, M., Convey, P., Worland, M.R. & Guglielmin, M. 2017. Ecology of moss banks on Signy Island (Maritime Antarctic). Botanical Journal of the Linnean Society, 184, 518533.CrossRefGoogle Scholar
Cannone, N., Guglielmin, M., Convey, P., Worland, M.R. & Favero-Longo, S.E. 2016. Trends in higher plant populations over the last half century on Signy Island, Maritime Antarctic. Climatic Change, 134, 651665.CrossRefGoogle Scholar
Chapman, A.D., Muñoz, M.E.S. & Koch, I. 2005. Environmental information: placing environmental phenomena in an ecological and environmental context. Biodiversity Informatics, 2, 2441.CrossRefGoogle Scholar
Chown, S.L., Huiskes, A.H.L., Gremmen, N.J.M., Lee, J.E., Terauds, A., Crosbie, K., et al. 2012. Continent-wide risk assessment for the establishment of nonindigenous species in Antarctica. Proceedings of the National Academy of Sciences of the United States of America, 109, 49384943.CrossRefGoogle ScholarPubMed
Convey, P. 1996. The influence of environmental characteristics on life history attributes of Antarctic terrestrial biota. Biological Reviews, 71, 191225.CrossRefGoogle Scholar
Convey, P. 2017. Antarctic ecosystems. Encyclopedia of Biodiversity, 1, 179187.Google Scholar
Convey, P. & McInnes, S.J. 2005. Exceptional, tardigrade dominated, ecosystems from Ellsworth Land, Antarctica. Ecology, 86, 519527.CrossRefGoogle Scholar
Convey, P. & Peck, L.S. 2019. Antarctic environmental change and biological responses. Science Advances, 5, eaaz0888.CrossRefGoogle ScholarPubMed
Convey, P. & Smith, R.I.L. 2006. Responses of terrestrial Antarctic ecosystems to climate change. Plant Ecology, 182, 110.Google Scholar
Convey, P., Coulson, S.J., Worland, M.R. & Sjöblom, A. 2018. The importance of understanding annual and shorter-term temperature patterns and variation in the surface levels of polar soils for terrestrial biota. Polar Biology, 41, 119.CrossRefGoogle Scholar
Convey, P., Chown, S.L., Clarke, A., Barnes, D.K.A., Bokhorst, S., Cummings, V.W., et al. 2014. The spatial structure of Antarctic biodiversity. Ecological Monographs, 2, 203244.CrossRefGoogle Scholar
Croxall, J.P. 1984. Seabirds. In Laws, R.M., ed. Antarctic ecology. London: Academic Press, 533619.Google Scholar
De Bie, T., De Meester, L., Brendonck, L., Martens, K. & Goddeeris, B. 2012. Body size and dispersal mode as key traits determining metacommunity structure of aquatic organisms. Ecology Letters, 15, 740747.CrossRefGoogle Scholar
De Vries, A. & Ripley, B.D. 2015. ggdendro: create dendrograms and tree diagrams using ‘ggplot2’. R package version. Vienna: R Foundation for Statistical Computing, 17 pp.Google Scholar
Diamond, J.M. 1975. Assembly of species communities. In Cody, M.L. & Diamond, J.M., eds. Ecology and evolution of communities. Cambridge, MA: Harvard University Press, 342344.Google Scholar
Dray, S. & Dufour, A.B. 2007. The ade4 package: implementing the duality diagram for ecologists. Journal of Statistical Software, 22, 120.CrossRefGoogle Scholar
During, H.J. & Lloret, F. 2001. The species-pool hypothesis from a bryological perspective. Folia Geobotanica, 36, 6370.CrossRefGoogle Scholar
Elton, C. 1927. Animal ecology. London: Sidwick & Jackson, 207 pp.Google Scholar
Farrar, J.F. 1976. Ecological physiology of the lichen Hypogymnia physodes. II. Effects of wetting and drying cycles and the concept of physiological buffering. New Phytologist, 77, 105113.CrossRefGoogle Scholar
Farrar, J.F. 1978. Ecological physiology of the lichen Hypogymnia physodes. IV. Carbon allocation at low temperatures. New Phytologist, 81, 6569.CrossRefGoogle Scholar
Feio, M.J. & Dolédec, S. 2012. Integration of invertebrate traits into predictive models for indirect assessment of stream functional integrity: a case study in Portugal. Ecological Indicators, 15, 236247.CrossRefGoogle Scholar
Fox, B.J. & Brown, J.H. 1993. Assembly rules for functional groups in North American desert rodent communities. Oikos, 67, 358370.CrossRefGoogle Scholar
Funk, J.L., Cleland, E.E., Suding, K.N. & Zavaleta, E.S. 2008. Restoration through reassembly: plant traits and invasion resistance. Trends in Ecology and Evolution, 23, 695703.CrossRefGoogle ScholarPubMed
Glime, J.M. 2017. Physiological ecology. In Glime, J.M., ed. Bryophyte ecology. Ebook sponsored by Michigan Technological University and the International Association of Bryologists, Houghton. MI.Google Scholar
Goffinet, B., Buck, W.R. & Shaw, A.J. 2009. Morphology and classification of the Bryophyta. In Goffinet, B. & Shaw, A.J., eds. Bryophyte biology. New York: Cambridge University Press, 55138.Google Scholar
Grace, J.B. & Tilman, D. 1990. Perspectives on plant competition. San Diego, CA: Academic Press, 504 pp.Google Scholar
Gradstein, S.R., Churchill, S.P. & Salazar-Allen, N. 2001. Guide to the bryophytes of tropical America. Memoirs of the New York Botanical Garden, 87, 1301.Google Scholar
Guo, Y., Wang, N., Li, G., Rosas, G., Zang, J., Ma, Y., et al. 2018. Direct and indirect effects of penguin feces on microbiomes in Antarctic ornithogenic soils. Frontiers in Microbiology, 9, 552.CrossRefGoogle ScholarPubMed
Heino, J., Mykrä, H. & Muotka, T. 2007. Ecological filters and variability in stream macroinvertebrate communities: do taxonomic and functional structure follow the same path? Ecography, 30, 217230.CrossRefGoogle Scholar
Hespanhol, H., Vieira, C.C. & Séneca, A. 2008. Briófitas. Porto: Vertigem, 36 pp.Google Scholar
Hildrew, A.G. & Giller, P.S. 1994. Patchiness, species interactions and disturbance in the stream benthos. In Giller, P.S., Hildrew, A.G. & Raffaelli, D.G., eds. Aquatic ecology: scale, pattern and process. Oxford: Wiley-Blackwell, 2162.Google Scholar
Hogg, I.D., Cary, S.C., Convey, P., Newsham, K.K., O'Donnell, A.G., Adams, B.J., et al. 2006. Biotic interactions in Antarctic terrestrial ecosystems: are they a factor? Soil Biology and Biochemistry, 38, 30353040.CrossRefGoogle Scholar
Hughes, K.A. & Convey, P. 2014. Non-native species in Antarctic terrestrial environments: the impacts of climate change and human activity. In Ziska, L. & Dukes, J.S., eds. Invasive species and global climate change. Wallingford: CABI Publishing, 81100.CrossRefGoogle Scholar
Hughes, K.A., Convey, P., Vega, G.C., Aragón, P., Olalla-Tárraga, M.Á. & Pertierra, L.R. 2019. Human-mediated dispersal of terrestrial species between Antarctic biogeographic regions: a preliminary risk assessment. Journal of Environmental Management, 232, 7389.CrossRefGoogle ScholarPubMed
Hulbert, A.J. 2003. Life, death and membrane bilayers. Journal of Experimental Biology, 206, 23032311.CrossRefGoogle ScholarPubMed
Kanda, H. 1986. Moss communities in some ice-free areas along Soya Coast, East Antarctica. Memoirs of Natural Institute of Polar Research, 44, 229240.Google Scholar
Kanda, H. & Ohtani, S. 1991. Morphology of the aquatic mosses collected in Lake Yukidori, Langhovde, Antarctica. Proceedings of the NIPR Symposium on Polar Biology, 4, 114122.Google Scholar
Karunen, P. & Salin, M. 1982. Seasonal changes in lipids of photosynthetically active and senescent parts of Sphagnum fuscum. Lindbergia, 8, 3544.Google Scholar
Keddy, P.A. 1992. Assembly and response rules: two goals for predictive community ecology, Uppsala. Journal of Vegetation Science, 3, 57164.CrossRefGoogle Scholar
Kennedy, A.D. 1993. Water as a limiting factor in the Antarctic terrestrial environment: a biogeographical synthesis. Arctic and Alpine Research, 125, 308315.CrossRefGoogle Scholar
Kobayashi, K. 1974. Purinsu Orafu engan chiiki ni okeru shokusei [A preliminary report on the vegetation of the Prince Olav Coast, Antarctica]. Nankyoku Shiryô [Antarctic Record], 51, 828.Google Scholar
Kozeretska, I.А., Parnikoza, I.Yu., Mustafa, O., Tyschenko, O.V., Korsun, S.G. & Convey, P. 2010. Development of Antarctic herb tundra vegetation near Arctowski station, King George Island. Polar Science, 3, 254261.CrossRefGoogle Scholar
Lisboa, R.C.L. & Ilkiu-Borges, A.L. 1995. Diversidade das briófitas de Belém - PA e seu potencial como indicadoras de poluição. Boletim do Museu Paraense Emílio Goeldi, série Botânica, 2, 131293.Google Scholar
Longton, R.E. 1988. The biology of polar bryophytes and lichens. Cambridge: Cambridge University Press, 391 pp.CrossRefGoogle Scholar
Magurran, A.E. 2011. Medindo a diversidade biológica. Curitiba: Editora da UFPR, 261 pp.Google Scholar
Marsz, A. & Rakusa-Suszczewski, S. 1987. Charakterystyka ekologiczna rejonu Zatoki Admiralicji. I. Klimat i obszary wolne od lodu. Kosmos, 36, 103127.Google Scholar
Matsuda, T. 1963. Nankyoku Higashi Onguru-to no sen-rui bunpu ni tsuite [The distribution of mosses on East Ongul Island, Antarctica]. Hikobia, 3, 254265.Google Scholar
Matsuda, T. 1968. Ecological study of the moss community and microorganisms in the vicinity of Syowa Station, Antarctica. JARE Scientific Reports, Series E: Biology, 29, 158.Google Scholar
McQuitty, L.L. 1964. Capabilities and improvements of linkage analysis as a clustering method. Educational and Psychological Measurement, 24, 441456.CrossRefGoogle Scholar
Mendonça, E.S., La Scala, N., Panosso, A.R., Simas, F.N.B. & Schaefer, C.E.G.R. 2010. Spatial variability models of CO2 emissions from soils colonized by grass (Deschampsia antarctica) and moss (Sanionia uncinata) in Admiralty Bay, King George Island. Antarctic Science, 23, 2733.CrossRefGoogle Scholar
Menge, B.A. & Olson, A.M. 1990. Role of scale and environmental factors in regulation of community structure. Trends in Ecology and Evolution, 5, 5257.CrossRefGoogle ScholarPubMed
Michel, R.F.M., Schaefer, C.E.G.R., Poelking, E.L., Simas, F.N.B., Fernandes Filho, E.I. & Bockheim, J.G. 2012. Active layer temperature in two cryosols from King George Island, Maritime Antarctica. Geomorphology, 155, 1219.CrossRefGoogle Scholar
Moll, A., Braun, M. & Luberas, A. 2005. Determination of glacier velocities on King George Island (Antarctic Peninsula) by DIFSAR. In: Proceedings of the Fringe ATSR Workshop, Frascati, Italy. Paris: European Space Agency, 12281231.Google Scholar
Montiel, P.O. 2000. Soluble carbohydrates (trehalose in particular) and cryoprotection in polar biota. CryoLetters, 21, 8390.Google ScholarPubMed
Muñoz, J., Felicísimo, A.M., Cabezas, F., Burgaz, A.R. & Martínez, I. 2004. Wind as a long-distance dispersal vehicle in the Southern Hemisphere. Science, 304, 11441147.CrossRefGoogle ScholarPubMed
Nakanishi, S. 1977. Ecological studies of the moss and lichen communities in the ice-free areas near Syowa Station, Antarctica. Nankyoku Shiryô [Antarctic Record], 59, 6896.Google Scholar
Nakatsubo, T. & Ohtani, S. 1992. Note on the structure of moss colonies composed of two species on King George Island, the South Shetland Islands. Nankyoku Shiryô [Antarctic Record], 36, 285293.Google Scholar
Ochyra, R. 1998. The moss flora of King George Island, Antarctica. Kraków: Polish Academy of Sciences, W. Szafer Institute of Botany, 279 pp.Google Scholar
Ochyra, R, Smith, R.I.L. & Bednarek-Ochyra, H. 2008. The illustrated moss flora of Antarctica. Cambridge: Cambridge University Press, 704 pp.Google Scholar
Paradis, E., Claude, J. & Strimmer, K. 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics, 20, 289290.CrossRefGoogle ScholarPubMed
Pereira, A.B., Spielmann, A.A., Martins, M.F.N. & Francelino, M.R. 2007. Plant communities from icefree areas of Keller Peninsula, King George Island, Antarctica. Oecologia Brasiliensis, 11, 1422.CrossRefGoogle Scholar
Pertierra, L.R., Hughes, K.A., Vega, G.C. & Olalla-Tárraga, M.Á. 2017. Correction: High resolution spatial mapping of human footprint across Antarctica and its implications for the strategic conservation of avifauna. PLoS ONE, 12, e0173649.CrossRefGoogle ScholarPubMed
Pertierra, L.R., Lara, F., Tejedo, P., Quesada, A. & Benayas, J. 2013. Rapid denudation processes in cryptogamic communities from Maritime Antarctica subjected to human trampling. Antarctic Science, 25, 318328.CrossRefGoogle Scholar
Pertierra, L.R., Santos-Martin, F., Hughes, K.A., Avila, C., Caceres, J.O., De Filippo, D., et al. 2021. Ecosystem services in Antarctica: global assessment of the current state, future challenges and managing opportunities. Ecosystem Services, 49, 101299.CrossRefGoogle Scholar
Proctor, M.C.F., Oliver, M.J., Wood, A.J., Alpert, P., Stark, L.R., Cleavitt, N.L. & Mishler, B.D. 2007. Desiccation-tolerance in bryophytes: a review. The Bryologist, 4, 595621.CrossRefGoogle Scholar
Putzke, J. & Pereira, A.B. 2001. The Antarctic mosses with special reference to the South Shetland Islands, 1st edn. Canoas, Rio Grande do Sul: EDULBRA, 186 pp.Google Scholar
R Core Team. 2013. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Available at http://www.R-project.org/Google Scholar
Rakusa-Suszczewski, S. 1980a. Environmental conditions and the functioning of Admiralty Bay (South Shetland Islands) as part of the near shore Antarctic ecosystem. Polish Polar Research, 1, 1127.Google Scholar
Rakusa-Suszczewski, S. 1980b. The role of near-shore research in gaining and understanding of the functioning of the Antarctic ecosystem. Polskie Archiwum Hydrobiologii, 27, 229233.Google Scholar
Rakusa-Suszczewski, S. 1987. The matter transport in the near shore ecosystem of the Admiralty Bay (King George Island, South Shetlands). Collogue sur ecologie Marine des iles Subantarctiques et Antarctiques (Paris 25 juin 1985). CNFRA, 57, 715.Google Scholar
Rakusa-Suszczewski, S., Mietus, M. & Piasecki, J. 1993. Weather and climate. In Rakusa-Suszczewski, S., ed. The Maritime Antarctic coastal ecosystem of Admiralty Bay. Warsaw: Polish Academy of Sciences, 1925.Google Scholar
Rakusa-Suszczewski, S., Jażdżewski, K., Myrcha, A. & Olech, M. 1998. Biological and ecological studies carried out at the Polish Antarctic Station Henryk Arctowski, 1977–1997. Polish Polar Research, 19, 3760.Google Scholar
Ricklefs, R.E. & Schluter, D. 1993. Species diversity: regional and historical influences. In Ricklefs, R.E. & Schluter, D., eds. Species diversity in ecological communities: historical and geographical perspectives. Chicago, IL: University of Chicago Press, 350363.Google Scholar
Robinson, S.A., Wasley, J., Popp, M. & Lovelock, C.E. 2000. Desiccation tolerance of three moss species from Continental Antarctica. Australian Journal of Plant Physiology, 27, 379388.Google Scholar
Roser, D.J., Melick, D.R., Ling, H.U. & Seppelt, R.D. 1992. Polyol and sugar content of terrestrial plants from Continental Antarctica. Antarctic Science, 4, 413420.CrossRefGoogle Scholar
Royles, J., Amesbury, M.J., Convey, P., Griffiths, H., Hodgson, D.A., Leng, M.J. & Charman, D.J. 2013. Plants and soil microbes respond to recent warming on the Antarctic Peninsula. Current Biology, 23, 17021706.CrossRefGoogle ScholarPubMed
Rudolph, E.D. 1971. Ecology of land plants in Antarctica. In Quam, L.O., ed. Research in the Antarctic. Washington, DC: American Association for the Advancement of Science, 191211.Google Scholar
Ruiz-Fernández, J., Oliva, Marc. & García-Hernández, C. 2017. Topographic and geomorphologic controls on the distribution of vegetation formations in Elephant Point (Livingston Island, Maritime Antarctica). Science of the Total Environment, 588, 340349.CrossRefGoogle Scholar
Sack, L., Ball, M.C., Brodersen, C., Davis, S.D., Des Marais, D.L., Donovan, L.A., et al. 2016. Plant hydraulics as a central hub integrating plant and ecosystem function: meeting report for ‘emerging frontiers in plant hydraulics'. Plant, Cell & Environment, 39, 20852094.CrossRefGoogle ScholarPubMed
Schliep, K.P. 2010. Phangorn: phylogenetic analysis in R. Bioinformatics, 27, 592593.CrossRefGoogle ScholarPubMed
Shimizu, H. 1977. Nishi Onguru-to oyobi Teoya-to no shokusei bunpu to kankyo yoin [Vegetational distribution and habitats on West Ongul and Teoya Islands, Antarctica]. Nankyoku Shiryô [Antarctic Record], 59, 97107.Google Scholar
Shortlidge, E.E., Carey, S.B., Payton, A.C., McDaniel, S.F., Rosenstiel, T.N. & Eppley, S.M. 2021. Microarthropod contributions to fitness variation in the common moss, Ceratodon purpureus. Proceedings of the Royal Socety Series B, 288, 20210119.Google Scholar
Simas, F.N., Schaefer, C.E.G., Albuquerque Filho, M.R., Francelino, M.R., Fernandes Filho, E.I. & da Costa, L.M. 2008. Genesis, properties and classification of Cryosols from Admiralty Bay, Maritime Antarctica. Geoderma, 144, 116122.CrossRefGoogle Scholar
Simões, J.C., Bremer, U.F., Aquino, F.E. & Ferron, F.E. 1999. Morphology and variations of glacial drainage basins in the King George Island ice field, Antarctica. Annals of Glaciology, 29, 220224.CrossRefGoogle Scholar
Smith, R.I.L. 1972. Vegetation of the South Orkney Islands, with particular reference to Signy Island. British Antarctic Survey Scientific Reports, 68, 124.Google Scholar
Smith, R.I.L. 1984. Terrestrial biology of the Antarctic and sub-Antarctic. In Laws, R.M., ed. Antarctic ecology. London: Academic Press, 61162.Google Scholar
Smith, R.I.L. & Convey, P. 2002. Enhanced sexual reproduction in bryophytes at high latitudes in the maritime Antarctic. Journal of Bryology, 24, 107117.CrossRefGoogle Scholar
Sotille, M.E., Bremer, U.F., Vieira, G., Vehlo, L.F., Petsch, C. & Simões, J.C. 2020. Evaluation of UAV and satellite-derived NDVI to map Maritime Antarctic vegetation. Applied Geography, 125, 102322.CrossRefGoogle Scholar
Tatur, A. 1989. Ornithigenic soils of the Maritime Antarctica. Polish Polar Research, 10, 481532.Google Scholar
Tejedo, P., Pertierra, L., Benayas, J., Convey, P., Justel, A. & Quesada, A. 2012. Trampling on Maritime Antarctica: can soil ecosystems be effectively protected through existing codes of conduct? Polar Research, 31, 10888.CrossRefGoogle Scholar
Thomas, D.N., Fogg, G., Convey, P., Fritsen, C., Gilli, J.-M., Gradinger, R., et al. 2008. The biology of polar habitats. Oxford: Oxford University Press, 274 pp.Google Scholar
Tin, T., Fleming, Z.L., Hughes, K.A., Ainley, D.G., Convey, P., Moreno, C.A., et al. 2009. Impacts of local human activities on the Antarctic environment. Antarctic Science, 21, 333.CrossRefGoogle Scholar
Tonn, W.M., Magnuson, J.J., Rask, M. & Toivonen, J. 1990. Intercontinental comparison of small-lake fish assemblages: the balance between local and regional processes. American Naturalist, 136, 345375.CrossRefGoogle Scholar
Tuba, Z., Slack, N.G. & Stark, L.R. 2011. Bryophyte ecology and climate change. Cambridge: Cambridge University Press, 528 pp.CrossRefGoogle Scholar
Turner, J., Lu, H., White, I., King, J.C., Phillips, T., Hosking, J.S., et al. 2016. Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature, 535, 411415.CrossRefGoogle ScholarPubMed
Valentin, J.L. 2012. Ecologia numérica: uma introdução à análise multivariada de dados ecológicos. Rio de Janeiro: Editora Interciencia, 154 pp.Google Scholar
Walker, T.R., Reid, K., Arnould, J.P.Y. & Croxall, J.P. 1997. Marine debris surveys at Bird Island, South Georgia 1990–1995. Marine Pollution Bulletin, 34, 6165.CrossRefGoogle Scholar
Walton, D.W.H. 1984. The terrestrial environment. In Laws, R.M., ed. Antarctic ecology. London: Academic Press, 160.Google Scholar
Wasley, J., Robinson, S.A., Lovelock, C.E. & Popp, M. 2006. Some like it wet - biological characteristics underpinning tolerance of extreme water stress events in Antarctic bryophytes. Functional Plant Biology, 33, 443455.CrossRefGoogle ScholarPubMed
Wen, J., Kang, J., Xie, Z., Han, J. & Lluberas, A. 1994. Climate, mass balance and glacial changes on small dome of Collins Ice Cap, King George Island, Antarctica. Antarctic Research, 5, 5261.Google Scholar
Wickham, H. 2016. ggplot2. Elegant graphics for data analysis. Houston, TX: Springer International Publishing, 276 pp.Google Scholar
Yamanaka, M. & Sato, K. 1977. Syowa Kiti fukin no rikujo shokubutsu gunraku no bunpu to suibun oyobi yobun tono kankei [Distribution of terrestrial plant communities near Syowa Station in Antarctica, with special reference to water supply and soil property]. Nankyoku Shiryô [Antarctic Record], 59, 567.Google Scholar