Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-16T03:55:40.570Z Has data issue: false hasContentIssue false

Bound water freezing in Antarctic Umbilicaria aprina from Schirmacher Oasis

Published online by Cambridge University Press:  30 March 2012

H. Harańczyk*
Affiliation:
Institute of Physics, Jagiellonian University, ul. Reymonta 4, 30-059 Cracow, Poland
P. Nowak
Affiliation:
Institute of Physics, Jagiellonian University, ul. Reymonta 4, 30-059 Cracow, Poland
M. Bacior
Affiliation:
Institute of Physics, Jagiellonian University, ul. Reymonta 4, 30-059 Cracow, Poland
M. Lisowska
Affiliation:
Institute of Botany, Jagiellonian University, Kopernika 27, 31-501 Cracow, Poland
M. Marzec
Affiliation:
Institute of Physics, Jagiellonian University, ul. Reymonta 4, 30-059 Cracow, Poland
M. Florek
Affiliation:
Institute of Physics, Jagiellonian University, ul. Reymonta 4, 30-059 Cracow, Poland
M.A. Olech
Affiliation:
Institute of Botany, Jagiellonian University, Kopernika 27, 31-501 Cracow, Poland

Abstract

The effect of low temperature on Umbilicaria aprina collected from Schirmacher Oasis, East Antarctica, was determined over a wide range of hydration using proton free induction decays, proton nuclear magnetic resonance (NMR) spectra and differential scanning calorimetry methods. The proton NMR line is a superposition of the broad component from the solid matrix of the thallus and a narrower component from the averaged bound water pool. Proton free induction decays may be resolved into three components: a solid component well described by the Abragam function and two exponentially decaying components from water loosely bound and water tightly bound in the thallus. With decreased temperature the loosely bound water pool (freezing water) is transferred to the tightly bound water pool (non-freezing water), and vanishes below -40°C. Bound water freezing and melting temperatures decrease with the decrease of hydration level, suggesting that heterogeneous ice nucleation is responsible for water freezing. The onset of bound water freezing temperature is c. 10°C lower than the melting temperature. The U. aprina thalli do not reveal the ability to stimulated ice nucleation at higher temperature. Freeze-thaw cycles showed that for n > 5 cycles no substantial change occurs in the difference between melting and freezing temperatures.

Type
Biological Sciences
Copyright
Copyright © Antarctic Science Ltd 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abragam, A. 1961. The principles of nuclear magnetism. Oxford: Clarendon Press, 597 pp.Google Scholar
Angell, C.A. 1982. Supercooled water. In Franks, F.,ed. Water: a comprehensive treatise, vol. 7. New York: Plenum Press, 181.Google Scholar
Block, W. 1995. Insects and freezing. Science Progress, 78, 349372.Google Scholar
Block, W.Sømme, L. 1983. Low temperature adaptations in beetles from the sub-Antarctic island of South Georgia. Polar Biology, 2, 109114.CrossRefGoogle Scholar
Block, W., Grubor-Lajsic, G.Worland, R. 1993. Cold tolerance of a larval tipuloid from an upland habitat. Cryo-Letters, 14, 185192.Google Scholar
Chapman, B.E., Roser, D.J.Seppelt, R.D. 1994. 13C-NMR analysis of Antarctic cryptogam extracts. Antarctic Science, 6, 295305.CrossRefGoogle Scholar
Derbyshire, W., van Den Bosch, M., van Dusschoten, D., MacNaughtan, W., Farhat, I.A., Hemminga, M.A.Mitchell, J.R. 2004. Fitting of the beat pattern observed in NMR free-induction decay signals of concentrated carbohydrate-water solutions. Journal of Magnetic Resonance, 168, 278283.CrossRefGoogle ScholarPubMed
Duman, J.G. 1984. Change in overwintering mechanism of the cucujid beetle Cucujus clavipes. Journal of Insect Physiology, 30, 235239.CrossRefGoogle Scholar
Gaff, D.F. 1977. Desiccation tolerant vascular plants of southern Africa. Oecologia, 31, 95109.CrossRefGoogle ScholarPubMed
Graham, D.Patterson, B.D. 1982. Responses of plants to low, non-freezing temperatures: proteins, metabolism and acclimation. Annual Review of Plant Physiology, 33, 347372.CrossRefGoogle Scholar
Hamada, N., Okazaki, K.Shinozaki, M. 1994. Accumulation of monosaccharides in lichen mycobionts cultured under osmotic conditions. Bryologist, 97, 176179.CrossRefGoogle Scholar
Harańczyk, H. 2003. On water in extremely dry biological systems. Kraków: Wydawnictwo Uniwersytetu Jagiellonskiego, 276 pp.Google Scholar
Harańczyk, H., Bacior, M.Olech, M.A. 2008. Deep dehydration of Umbilicaria aprina thalli observed by proton NMR and sorption isotherm. Antarctic Science, 20, 527535.CrossRefGoogle Scholar
Harańczyk, H., Gaździński, S.Olech, M.A. 1998. The initial stages of lichen hydration as observed by proton magnetic relaxation. New Phytologist, 138, 191202.CrossRefGoogle ScholarPubMed
Harańczyk, H., Gaździński, S.Olech, M.A. 2000a. Freezing protection mechanism in Cladonia mitis as observed by proton magnetic relaxation. Bibliotheca Lichenology, 75, 265274.Google Scholar
Harańczyk, H., Gaździński, S.Olech, M.A. 2000b. Low temperature effect on the thallus of Cladonia mitis as observed by proton spin-lattice relaxation. Molecular Physics Reports, 29, 135138.Google Scholar
Harańczyk, H., Grandjean, J.Olech, M.A. 2003a. Freezing of water bound in lichen thallus as observed by 1H NMR. I. Freezing of loosely bound water in Cladonia mitis at different hydration levels. Colloids & Surfaces B: Biointerfaces, 28, 239249.CrossRefGoogle Scholar
Harańczyk, H., Leja, A.Strzałka, K. 2006a. The effect of water accessible paramagnetic ions on subcellular structures formed in developing wheat photosynthetic membranes as observed by NMR and by sorption isotherm. Acta Physica Polonica, A109, 389398.CrossRefGoogle Scholar
Harańczyk, H., Bacior, M., Jastrzębska, P.Olech, M.A. 2009a. Deep dehydration of Antarctic lichen Leptogium puberulum Hue observed by NMR and sorption isotherm. Acta Physica Polonica, A115, 516520.CrossRefGoogle Scholar
Harańczyk, H., Czak, J., Nowak, P.Nizioł, J. 2010. Initial phases of DNA rehydration by NMR and sorption isotherm. Acta Physica Polonica, A117, 257262.Google Scholar
Harańczyk, H., Grandjean, J., Olech, M.A.Michalik, M. 2003b. Freezing of water bound in lichen thallus as observed by 1H NMR. II. Freezing protection mechanisms in a cosmopolitan lichen Cladonia mitis and in Antarctic lichen species at different hydration levels. Colloids & Surfaces B: Biointerfaces, 28, 251260.CrossRefGoogle Scholar
Harańczyk, H., Leja, A., Jemioła-Rzemińska, M.Strzałka, K. 2009c. Maturation processes of photosynthetic membranes observed by proton magnetic relaxation and sorption isotherm. Acta Physica Polonica, A115, 526532.CrossRefGoogle Scholar
Harańczyk, H., Pietrzyk, A., Leja, A.Olech, M. 2006b. Bound water structure on the surfaces of Usnea antarctica as observed by NMR and sorption isotherm. Acta Physica Polonica, A109, 411416.CrossRefGoogle Scholar
Harańczyk, H., Bacior, M., Jamróz, J., Jemioła-Rzemińska, M.Strzałka, K. 2009b. Rehydration of DGDG (digalactosyl diacylglicerol) model membrane lyophilizates observed by NMR and sorption isotherm. Acta Physica Polonica, A115, 521525.CrossRefGoogle Scholar
Horwath, K.L.Duman, J.G. 1984. Yearly variations in the overwintering mechanisms of the cold hardy beetle Dendroides canadensis. Physiological Zoology, 57, 4045.CrossRefGoogle Scholar
Jensen, M., Heber, U.Oettmeier, W. 1981. Chloroplast membrane damage during freezing: the lipid phase. Cryobiology, 18, 322335.CrossRefGoogle ScholarPubMed
Kappen, L. 1993. Plant activity under snow and ice, with particular reference to lichens. Arctic, 46, 297302.CrossRefGoogle Scholar
Kappen, L.Breuer, M. 1991. Ecological and physiological investigations in continental Antarctic cryptogams. II. Moisture relations and photosynthesis of lichens near Casey Station, Wilkes Land. Antarctic Science, 3, 273278.CrossRefGoogle Scholar
Kappen, L., Schroeter, B., Hestmark, G.Winkler, J.B. 1996a. Field measurements of photosynthesis of Umbilicarious lichens in winter. Botanica Acta, 109, 292298.CrossRefGoogle Scholar
Kaurin, A., Juttila, O.Hansen, J. 1981. Seasonal changes in frost hardiness in cloudberry Rubus chamaemorus in relation to carbohydrate content with special reference to sucrose. Physiologia Plantarum, 52, 310314.CrossRefGoogle Scholar
Kieft, T.L. 1988. Ice nucleation activity in lichens. Applied and Environmental Microbiology, 54, 16781681.CrossRefGoogle ScholarPubMed
Kieft, T.L.Ahmadjian, V. 1989. Biological ice nucleation activity in lichen mycobionts and photobionts. The Lichenologist, 21, 355362.CrossRefGoogle Scholar
Kieft, T.L.Ruscetti, T. 1990. Characterization of biological ice nuclei from a lichen. Journal of Bacteriology, 172, 35193523.CrossRefGoogle ScholarPubMed
Lange, O.L. 1965. Der CO2 Gaswechsel von Flechen bei tiefen Temperaturen. Planta, 64, 119.CrossRefGoogle Scholar
Lange, O.L. 1966. CO2-Gaswechsel der Fleche Cladonia alcicornis nach langfristigem Aufenthalt bei tiefen Temperaturen. Flora, 156, 500502.Google Scholar
Larson, D.W. 1978. Patterns of lichen photosynthesis and respiration following prolonged frozen storage. Canadian Journal of Botany, 56, 21192123.CrossRefGoogle Scholar
Melick, D.R.Seppelt, R.D. 1994. The effect of hydration on carbohydrate levels, pigment content and freezing point of Umbilicaria decussata at a continental Antarctic locality. Cryptogram Botany, 4, 212217.Google Scholar
Nash III, T.H., Kappen, L., Loesch, R., Larson, D.W.Matthes-Sears, U. 1987. Cold resistance of lichens with Trentepohlia- or Trebouxia- photobionts from the North American west coast. Flora, 179, 241251.CrossRefGoogle Scholar
Pintar, M.M. 1991. Some considerations of the round table subject. Magnetic Resonance Imaging, 9, 753754.CrossRefGoogle Scholar
Quinn, P.J.Williams, W.P. 1983. The structural role of lipids in photosynthetic membranes. Biochimica et Biophysica Acta, 737, 223266.CrossRefGoogle Scholar
Schroeter, B.Scheidegger, C.H. 1995. Water relations in lichens at subzero temperatures: structural changes and carbon dioxide exchange in the lichen Umbilicaria aprina from continental Antarctica. New Phytologist, 131, 273285.CrossRefGoogle Scholar
Schroeter, B., Green, T.G.A., Kappen, L.Seppelt, R.D. 1994. Carbon dioxide exchange at subzero temperatures. Field measurements on Umbilicaria aprina in Antarctica. Cryptogam Botany, 4, 233241.Google Scholar
Timur, A. 1969. Pulsed nuclear magnetic resonance studies of porosity, movable fluid, and permeability of sandstones. Journal of Petroleum Technology, 21, 775786.CrossRefGoogle Scholar
Valladares, F., Sancho, L.G.Ascaso, C. 1998. Water storage in the lichen family Umbilicariacae. Botanica Acta, 111, 99107.CrossRefGoogle Scholar
Węglarz, W.Harańczyk, H. 2000. Two-dimensional analysis of the nuclear relaxation function in the time domain: the program CracSpin. Journal of Physics D: Applied Physics, 33, 19091920.CrossRefGoogle Scholar
Worland, M.R., Block, W.Rothery, P. 1993. Ice nucleation studies of two beetles from sub-Antarctic South Georgia. Polar Biology, 13, 105112.CrossRefGoogle Scholar
Zachariassen, K.E. 1989. Thermal adaptations to polar environments. In Mercer, J.B., ed. Thermal physiology. Amsterdam: Elsevier, 2334.Google Scholar