Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-23T15:25:23.369Z Has data issue: false hasContentIssue false

Borers and encrusters as indicators of the presence of hermit crabs in Antarctic Eocene gastropods shells

Published online by Cambridge University Press:  29 June 2007

Silvio Casadio*
Affiliation:
Facultad de Ciencias Exactas y Naturales, UNLPam & CONICET, Uruguay 151, 6300 Santa Rosa, La Pampa, Argentina
Ana Parras
Affiliation:
Facultad de Ciencias Exactas y Naturales, UNLPam & CONICET, Uruguay 151, 6300 Santa Rosa, La Pampa, Argentina
Miguel Griffin
Affiliation:
Facultad de Ciencias Exactas y Naturales, UNLPam & CONICET, Uruguay 151, 6300 Santa Rosa, La Pampa, Argentina
Sergio Marenssi
Affiliation:
Instituto Antártico Argentino, Cerrito 1248, 1010 Buenos Aires, Argentina; Universidad de Buenos Aires & CONICET, Argentina

Abstract

The community of encrusting and boring organisms developed on shells of the gastropod Antarctodarwinella ellioti from the lower section of the La Meseta Formation (Eocene) exposed on Seymour (Marambio) Island, Antarctic Peninsula, allows inference that the shells were inhabited by hermit crabs. A Chi-square Independence Test revealed that the community - dominated by polychaetes and bryozoans - shows preference for the aperture interior area of the shell. A subsequent Cochran Q Test indicated that the differences in frequency of encrusting and boring organisms as counted on the different interior sectors of the aperture were statistically significant. Thus, polychaetes, boring bryozoans, and encrusting bryozoans, do not show the same frequency in each interior sector of the aperture; they are more frequent on the columella (P < 0.0001, P < 0.01 and P < 0.001 respectively). Encrusting bryozoans also appear to show a preference - albeit not as high as on the columella - for the outer lip. This community of boring and encrusting organisms and their distribution on the shell confirms that the shells were inhabited by hermit crabs. The community is similar to that described in Recent hermitted shells from mid-latitude temperate water environments, suggesting that such communities were already established in the Eocene.

Type
Life Sciences
Copyright
Copyright © Antarctic Science Ltd 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguirre-Urreta, M.B. & Olivero, E.B. 1992. A Cretaceous hermit crab from Antarctica: predatory activities and bryozoan symbiosis. Antarctic Science, 4, 207214.CrossRefGoogle Scholar
Al-Ogily, S.M. 1985. Further experiments on larval behaviour of the tubicolous polychaete Spirorbis inornatus L'Hardy & Quiévreux. Journal of Experimental Marine Biology and Ecology, 86, 285298.CrossRefGoogle Scholar
Bell, J.J. 2005. Influence of occupant microhabitat on the composition of encrusting communities on gastropod shells. Marine Biology, 147, 653661.CrossRefGoogle Scholar
Bien, W.F., Wendt, J.M. & Alexander, R.R. 1999. Site selection and behavior of sponge and bivalve borers in shells of the Cretaceous oysters Exogyra cancellata and Pycnodonte mutabilis from Delaware, USA. Historical Biology, 13, 299315.CrossRefGoogle Scholar
Bitner, M.A. 1996a. Brachiopods from the Eocene La Meseta Formation of Seymour Island, Antarctic Peninsula. In Gaździcki, A., ed. Palaeontological results of the Polish Antarctic Expeditions. Part II. Palaeontologia Polonica, No. 55, 65100.Google Scholar
Bitner, M.A. 1996b. Encrusters and borers of brachiopods from the La Meseta Formation (Eocene), Seymour Island, Antarctica. Polish Polar Research, 17, 2128.Google Scholar
Blake, J.A. & Evans, J.W. 1973. Polydora and related genera: borers in mollusk shells and other calcareous substrates. The Veliger, 1, 235249.Google Scholar
Boekschoten, G.J. 1966. Shell borings of sessile epibiontic organisms as palaeoecological guides (with examples from the Dutch coast). Palaeogeography, Palaeoclimatology, Palaeoecology, 2, 333379.CrossRefGoogle Scholar
Boekschoten, G.J. 1967. Palaeoecology of some Mollusca from the Tielrode Sands (Pliocene, Belgium). Palaeogeography, Palaeoclimatology, Palaeoecology, 3, 311362.CrossRefGoogle Scholar
Bordeaux, Y.L. & Brett, C.E. 1990. Substrate specific associations for paleoecology. Historical Biology, 4, 221224.CrossRefGoogle Scholar
Bottjer, D.J. 1982. Paleoecology of epizoans and borings on some Upper Cretaceous chalk oysters from the Gulf Coast. Lethaia, 15, 7584.CrossRefGoogle Scholar
Bromley, R.G. 1994. The palaeoecology of bioerosion. In Donovan, S.K., ed. The palaeobiology of trace fossils. London: Belhaven Press, 134154.Google Scholar
Bruno, J.F., Stachowicz, J.J. & Bertness, M.D. 2003. Inclusion of facilitation into ecological theory. Trends in Ecology and Evolution, 18, 119125.CrossRefGoogle Scholar
Buckley, W.J. & Ebersole, J.P. 1994. Symbiotic organisms increase the vulnerability of a hermit crab to predation. Journal of Experimental Marine Biology and Ecology, 182, 4964.CrossRefGoogle Scholar
Buick, D.P. & Ivany, L.C. 2004. 100 years in the dark: extreme longevity of Eocene bivalves from Antarctica. Geology, 32, 921924.CrossRefGoogle Scholar
Casadío, S., Marenssi, S. & Santillana, S. 2001. Endolithic bioerosion traces attributed to boring bryozoans in the Eocene of Antarctica. Ameghiniana, 38, 321329.Google Scholar
Chalmer, P.N. 1982. Settlement patterns of species in a marine fouling community and some mechanisms of succession. Journal of Experimental Marine Biology and Ecology, 58, 7385.CrossRefGoogle Scholar
Del Valle, R.A., Elliot, D.H. & Macdonald, D.I.M. 1992. Sedimentary basins on the east flank of the Antarctic Peninsula: proposed nomenclature. Antarctic Science, 4, 477478.CrossRefGoogle Scholar
Dirnberger, J.M. 1990. Benthic determinants of settlement for planktonic larvae: availability of settlement sites for the tube-building polychaete Spirorbis spirillum (Linnaeus) settling onto seagrass blades. Journal of Experimental Marine Biology and Ecology, 140, 89105.CrossRefGoogle Scholar
Doktor, M., Gaździcki, A., Marenssi, S.A., Porębski, S.J., Santillana, S.N. & Vrba, A.V. 1988. Argentine-Polish geological investigations on Seymour (Marambio) Island, Antarctica, 1988. Polish Polar Research, 9, 521541.Google Scholar
Dutton, A.L., Lohmann, K.C. & Zinsmeister, W.J. 2002. Stable isotope and minor element proxies for Eocene climate of Seymour Island, Antarctica. Paleoceanography, 17, 6.16.16.CrossRefGoogle Scholar
Elliot, D.H. & Trautman, T.A. 1982. Lower Tertiary strata on Seymour Island, Antarctic Peninsula. In Craddock, C., ed. Antarctic geoscience. Madison, WI: University of Wisconsin Press, 287297.Google Scholar
Feldmann, R.M. & Woodburne, M.O., eds. 1988. Geology and paleontology of Seymour Island Antarctic Peninsula. Boulder, CO: Geological Society of America Memoirs, No. 169, 566 pp.Google Scholar
Fernandez-Leborans, G. & Gabilondo, R. 2006. Inter-annual variability of the epibiotic community on Pagurus bernhardus from Scotland. Estuarine, Coastal and Shelf Science, 66, 3554.CrossRefGoogle Scholar
Glaessner, M.F. 1969. Decapoda. In Moore, R.C., ed. Treatise on invertebrate paleontology. Part R, Arthropoda 4. Lawrence, KS: University of Kansas Printing Service, R400R651.Google Scholar
Goin, F.J., Case, J.A., Woodburne, M.O., Vizcaino, S.F. & Reguero, M.A. 1999. New discoveries of “opposum-like” marsupials from Antarctica (Seymour Island, Middle Eocene). Journal of Mammalian Evolution, 6, 335364.CrossRefGoogle Scholar
Gutiérrez, J.L., Jones, C.G., Strayer, D.L. & Iribarne, O.O. 2003. Mollusks as ecosystem engineers: the role of shell production in aquatic habitats. Oikos, 101, 7990.CrossRefGoogle Scholar
Hamer, J. & Walker, G. 2001. Avoidance of dried biofilms on slate and alga surfaces by certain spirorbib and bryozoan larvae. Journal of Marine Biological Association of the United Kingdom, 81, 167168.CrossRefGoogle Scholar
Hara, H. 2001. Bryozoans from the Eocene of Seymour Island, Antarctic Peninsula. In Gaździcki, A., ed. Palaeontological Results of the Polish Antarctic Expeditions. Part III. Palaeontologia Polonica, 60, 33156.Google Scholar
Hazlett, B.A. 1981. The behavioral ecology of hermit crabs. Annual Review of Ecology and Systematics, 12, 122.CrossRefGoogle Scholar
Keough, M.J. 1983. Patterns of recruitment of sessile invertebrates in two subtidal habitats. Journal of Experimental Marine Biology and Ecology, 66, 213245.CrossRefGoogle Scholar
Kern, J.P., Grimmer, J.C. & Lister, K.H. 1974. A new fossil spionid tube, Pliocene and Pleistocene of California and Baja California. Journal of Paleontology, 48, 978982.Google Scholar
Lescinsky, H.L. 1997. Epibiont communities: recruitment and competition on North American Carboniferous brachiopods. Journal of Paleontology, 71, 3452.CrossRefGoogle Scholar
Marenssi, S.A. 1995. Sedimentología y paleoambientes de sedimentación de la Formación La Meseta, isla Marambio, Antártida. PhD thesis, Universidad de Buenos Aires, 402 pp. [Unpublished].Google Scholar
Marenssi, S.A., Santillana, S.N. & Rinaldi, C.A. 1998a. Paleoambientes sedimentarios de la Aloformación La Meseta (Eoceno), isla Marambio (Seymour), Antártida. Contribuciones del Instituto Antártico Argentino, 464, 151.Google Scholar
Marenssi, S.A., Santillana, S.N. & Rinaldi, C.A. 1998b. Stratigraphy of the La Meseta Formation (Eocene), Marambio Island, Antarctica. In Casadío, S., ed. Paleógeno de América del Sur y de la Península Antártica. Buenos Aires: Asociación Paleontológica Argentina, Publicación Especial 5, 137146.Google Scholar
McDermott, J.J. 2001. Symbionts of the hermit crab Pagurus longicarpus Say, 1817 (Decapoda: Anomura): New observations from New Jersey waters and a review of all known relationships. Proceedings of the Biological Society of Washington, 114, 624639.Google Scholar
Olivero, E.B. & Aguirre-Urreta, M.B. 1994. A new tube-builder hydractinian, symbiotic with hermit crabs, from the Cretaceous of Antarctica. Journal of Paleontology, 68, 11691182.CrossRefGoogle Scholar
Parras, A. & Casadío, S. 2006. The oyster Crassostrea? hatcheri (Ortmann, 1897), a physical ecosystem engineer from the upper Oligocene–lower Miocene of Patagonia, southern Argentina. Palaios, 21, 168186.CrossRefGoogle Scholar
Pezzetti, T.F., 1987. The sedimentology and provenance of the Eocene La Meseta Formation, Seymour Island, Antarctica. MSc thesis, Ohio State University, 165 pp. [Unpublished].Google Scholar
Pohowsky, R.A. 1978. The boring ctenostomate bryozoa: taxonomy and paleobiology based on cavities in calcareous substrata. Bulletins of American Paleontology, 73, 1193.Google Scholar
Porębski, S.J. 2000. Shelf-valley compound fill produced by fault subsidence and eustatic sea-level changes, Eocene La Meseta Formation, Seymour Island, Antarctica. Geology, 28, 147150.2.0.CO;2>CrossRefGoogle Scholar
Radwańska, U. 1996. A new echinoid from the Eocene La Meseta Formation of Seymour Island, Antarctic Peninsula. In Gaździcki, A., ed. Palaeontological results of the Polish Antarctic Expeditions. Part II. Palaeontologia Polonica 55, 117126.Google Scholar
Reiss, H., Knäuper, S. & Kröncke, I. 2003. Invertebrate associations with gastropod shells inhabited by Pagurus bernhardus (Paguridae) secondary hard substrate increasing biodiversity in North Sea soft-bottom communities. Sarsia, 88, 404415.CrossRefGoogle Scholar
Ryland, J.S. & Sykes, A.M. 1972. The analysis of pattern in communities of bryozoa. I. Discrete sampling methods. Journal of Experimental Marine Biology and Ecology, 8, 277297.CrossRefGoogle Scholar
Sadler, P.M. 1988. Geometry and stratification of uppermost Cretaceous and Paleogene units on Seymour Island, northern Antarctic Peninsula. In Feldmann, R.M. & Woodburne, M.O., eds. Geology and paleontology of Seymour Island Antarctic Peninsula. Memoir of the Geological Society of America, No. 169, 303320.CrossRefGoogle Scholar
Silén, L. 1947. On the anatomy and biology of Penetrantiidae and Immergentiidae (Bryozoa). Arkiv för Zoologie, 40, 148.Google Scholar
Soule, J.D. & Soule, D.F. 1969. Systematics and biogeography of burrowing bryozoans. American Zoologist, 9, 791802.CrossRefGoogle Scholar
Stachowitsch, M. 1980. The epibiotic and endolithic species associated with the gastropod shells inhabited by the hermit crabs Paguristes oculatus and Pagurus cuanensis. Marine Ecology Pubblicazioni della Stazione Zoologica di Napoli, 1, 73104.CrossRefGoogle Scholar
Stebbing, A.R.D. 1973. Observation on colony overgrowth and spatial competition. In Larwood, G.P., ed. Living and fossil Bryozoa. London: Academic Press, 173183.Google Scholar
Stilwell, J.D. & Zinsmeister, W.J. 1992. Molluscan systematics and biostratigraphy, Lower Tertiary La Meseta Formation, Seymour Island, Antarctic Peninsula. Antarctic Research Series, 55, 1192.Google Scholar
Taylor, P.D. 1979. Palaeoecology of the encrusting epifauna of some British Jurassic bivalves. Palaeogeography, Palaeoclimatology, Palaeoecology, 28, 241262.CrossRefGoogle Scholar
Taylor, P.D. 1994. Evolutionary palaeoecology of symbioses between bryozoans and hermit crabs. Historical Biology, 9, 157205.CrossRefGoogle Scholar
Taylor, P.D. & Schindler, K.S. 2004. A new Eocene species of the hermit-crab symbiont Hippoporidra (Bryozoa) from the Ocala Limestone of Florida. Journal of Paleontology, 78, 790794.2.0.CO;2>CrossRefGoogle Scholar
Taylor, P.D. & Wilson, M.A. 2003. Palaeoecology and evolution of marine hard substrate communities. Earth-Science Reviews, 62, 1103.CrossRefGoogle Scholar
Taylor, P.D., Schembri, P.J. & Cook, P.L. 1989. Symbiotic associations between hermit crabs and bryozoans from the Otago region, southeastern New Zealand. Journal of Natural History, 23, 10591085.CrossRefGoogle Scholar
Taylor, P.D., Wilson, M.A. & Bromley, R.G. 1999. A new ichnogenus for etchings made by cheilostome bryozoans into calcareous substrates: Palaeontology, 42, 595604.CrossRefGoogle Scholar
Ushakova, O.O. 2003. Combined effect of salinity and temperature on Spirorbis spirorbis L. and Circeus spirillum L. larvae from the White Sea. Journal of Experimental Marine Biology and Ecology, 296, 2333.CrossRefGoogle Scholar
Vermeij, G.J. 1978. Biogeography and adaptation: patterns of marine life. Cambridge, MA: Harvard University Press, 332 pp.Google Scholar
Vizcaíno, S.F., Reguero, M.A., Goin, F.J., Tambussi, C.P. & Noriega, J.I. 1998. Community structure of Eocene terrestrial vertebrates from Antarctic Peninsula. In Casadío, S., ed. Paleógeno de América del Sur y de la Península Antártica. Buenos Aires: Asociación Paleontológica Argentina, Publicación Especial 5, 137146.Google Scholar
Walker, S.E. 1988. Taphonomic significance of hermit crabs (Anomura: Paguridea): Epifaunal hermit crab - Infaunal gastropod example. Palaeogeography, Palaeoclimatology, Palaeoecology, 63, 4571.CrossRefGoogle Scholar
Walker, S.E. 1989. Hermit crabs as taphonomic agents. Palaios, 4, 439452.CrossRefGoogle Scholar
Walker, S.E. 1992. Criteria for recognizing marine hermit crabs in the fossil record using gastropod shells. Journal of Paleontology, 66, 535558.CrossRefGoogle Scholar
Walker, S.E. 1998. Endobionts on modern and fossil Turritella from the Northern Gulf of California Region. Ichnos, 6, 99115.CrossRefGoogle Scholar
Walker, S.E. & Carlton, J.T. 1995. Taphonomic losses become taphonomic gains: an experimental approach using the rocky shore gastropod, Tegula funebralis. Palaeogeography, Palaeoclimatology, Palaeoecology, 114, 197217.CrossRefGoogle Scholar
Warme, J.E. 1975. Borings as trace fossils and the processes of marine bioerosion. In Frey, R.W., ed. The study of trace fossils. Berlin: Springer, 181227.CrossRefGoogle Scholar
Wiedman, L.A. & Feldmann, R.M. 1988. Ichnofossils, tubiform body fossils, and depositional environment of the La Meseta Formation (Eocene) of Antarctica. In Feldmann, R.M., Woodburne, M.O., eds. Geology and paleontology of Seymour Island Antarctic Peninsula. Memoir of the Geological Society of America, No. 169, 531539.Google Scholar
Wilckens, O. 1910. Die Anneliden, Bivalven, und Gastropoden der antarktischen Kreideformation. Wissenschaftliche Ergebnisse der Schwedischen Südpolar-expedition, 1901–1903, unter der Leitung von Dr. Otto Nordenskjöld. Stockholm: Stockholm Lithographisches Institut, 3, 1132.Google Scholar
Williams, J.D. 2000. A new species of Polydora (Polychaeta: Spionidae) from the Indo–West Pacific and first record of host hermit crab egg predation by a commensal polydorid worm. Zoological Journal of the Linnean Society, 129, 537548.CrossRefGoogle Scholar
Williams, J.D. 2002. The ecology and feeding biology of two Polydora species (Polychaeta: Spionidae) found to ingest the embryos of host hermit crabs (Anomura: Decapoda) from the Philippines. Journal of Zoology, 257, 339351.CrossRefGoogle Scholar
Williams, J.D., McDermott, J.J., 2004. Hermit crab biocoenoses: a worldwide review of the diversity and natural history of hermit crab associates. Journal of Experimental Marine Biology and Ecology, 305, 1128.CrossRefGoogle Scholar
Woelkerling, W.J., Irvine, L.M. & Harvey, A.S. 1993. Growth-forms in non-geniculate coralline red algae (Corallinales, Rhodophyta). Australian Systematic Botany, 6, 277293.CrossRefGoogle Scholar
Woodburne, M.O. & Zinsmeister, W.J. 1982. Fossil land mammal from Antarctica. Science, 21, 284286.CrossRefGoogle Scholar
Zinsmeister, W.J. 1987. Unusual nautilid occurrence in the upper Eocene La Meseta Formation, Seymour Island, Antarctica. Journal of Paleontology, 61, 724726.CrossRefGoogle Scholar
Zinsmeister, W.J. & Camacho, H.H. 1982. Late Eocene (to possibly earliest Oligocene) molluscan fauna of the La Meseta Formation of Seymour Island, Antarctic Peninsula. In Craddock, C., ed. Antarctic geoscience. Madison, WI: University of Wisconsin Press, 299304.Google Scholar
Zullo, V.A., Feldmann, R.M. & Wiedman, L.A. 1988. Balanomorph Cirripedia from the Eocene La Meseta Formation, Seymour Island, Antarctica. In Feldmann, R.M. & Woodburne, M.O., eds. Geology and paleontology of Seymour Island, Antarctic Peninsula. Memoir of the Geological Society of America, No. 169, 303320.Google Scholar