Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-17T19:26:38.409Z Has data issue: false hasContentIssue false

Sexual size dimorphism, spatial segregation and sex-biased bycatch of southern and northern royal albatrosses in pelagic longline fisheries

Published online by Cambridge University Press:  26 October 2016

Sebastián Jiménez*
Affiliation:
Laboratorio de Recursos Pelágicos, Dirección Nacional de Recursos Acuáticos, Constituyente 1497, 11200 Montevideo, Uruguay British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge CB3 0ET, UK Proyecto Albatros y Petreles - Uruguay, Centro de Investigación y Conservación Marina (CICMAR), Uruguay
Andrés Domingo
Affiliation:
Laboratorio de Recursos Pelágicos, Dirección Nacional de Recursos Acuáticos, Constituyente 1497, 11200 Montevideo, Uruguay
Alejandro Brazeiro
Affiliation:
Instituto de Ecología y Ciencias Ambientales, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
Omar Defeo
Affiliation:
UNDECIMAR, Departamento de Ecología & Evolución, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
Martin Abreu
Affiliation:
Proyecto Albatros y Petreles - Uruguay, Centro de Investigación y Conservación Marina (CICMAR), Uruguay
Rodrigo Forselledo
Affiliation:
Laboratorio de Recursos Pelágicos, Dirección Nacional de Recursos Acuáticos, Constituyente 1497, 11200 Montevideo, Uruguay
Richard A. Phillips
Affiliation:
British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge CB3 0ET, UK

Abstract

Bycatch in longline fisheries is a major contributor to the global decline of albatrosses. Sexual segregation at sea often leads to unequal overlap with different fisheries, resulting in sex-biased bycatch, exacerbating the impact on a population level. In great albatrosses (Diomedea spp.), males (the larger sex) tend to spend more time at higher latitudes than females, attributed to competitive exclusion or differences in flight performance mediated by the pronounced sexual size dimorphism (SSD). Consequently, larger numbers of females are bycaught in pelagic longline fisheries in subtropical and temperate areas. Although this has been shown for Diomedea exulans, it has not been confirmed for all great albatross species. Here we examined the degree of SSD and developed discriminant functions to determine species and sex in D. epomophora and D. sanfordi; species that are often killed in several fisheries in the Southern Hemisphere. Based on a large sample of albatrosses bycaught off Uruguay, both species showed substantial SSD. Discriminant functions assigned species and sex to otherwise indeterminate individuals with 90–100% accuracy. Based on all birds identified (n=128), bycatch in the pelagic longline fishery was female-biased, indicating sexual segregation at sea. The discriminant functions presented enable species and sex to be identified, providing critical data for future bycatch assessments.

Type
Biological Sciences
Copyright
© Antarctic Science Ltd 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

ACAP 2009a. ACAP species assessments: northern royal albatross Diomedea sanfordi. Available at: http://www.acap.aq. Accessed 28 January 2016.Google Scholar
ACAP 2009b. ACAP species assessments: southern royal albatross Diomedea epomophora. Available at: http://www.acap.aq. Accessed 28 January 2016.Google Scholar
Alexander, K., Robertson, G. & Gales, R. 1997. The incidental mortality of albatrosses in longline fisheries. Kingston, TAS: Australian Antarctic Division.Google Scholar
Bugoni, L., Griffiths, K. & Furness, R.W. 2011. Sex-biased incidental mortality of albatrosses and petrels in longline fisheries: differential distributions at sea or differential access to baits mediated by sexual size dimorphism? Journal of Ornithology, 152, 261268.CrossRefGoogle Scholar
Croxall, J., Prince, P., Rothery, P. & Wood, A. 1998. Populations changes in albatrosses at South Georgia. In Robertson, G. & Gales, R., eds. Albatross biology and conservation. Chipping Norton: Surrey Beatty & Sons, 6983.Google Scholar
Cuthbert, R.J., Phillips, R.A. & Ryan, P.G. 2003. Separating the Tristan albatross and the wandering albatross using morphometric measurements. Waterbirds, 26, 338344.CrossRefGoogle Scholar
Favero, M., Blanco, G., García, G., Copello, S., Pon, J.P.S., Frere, E., Quintana, F., Yorio, P., Rabuffetti, F., Cañete, G. & Gandini, P. 2011. Seabird mortality associated with ice trawlers in the Patagonian shelf: effect of discards on the occurrence of interactions with fishing gear. Animal Conservation, 14, 131139.CrossRefGoogle Scholar
Froy, H., Lewis, S., Catry, P., Bishop, C.M., Forster, I.P., Fukuda, A., Higuchi, H., Phalan, B., Xavier, J.C., Nussey, D.H. & Phillips, R.A. 2015. Age-related variation in foraging behaviour in the wandering albatross at South Georgia: no evidence for senescence. PLoS ONE, 10, 10.1371/journal.pone.0116415.CrossRefGoogle ScholarPubMed
Gales, R. 1998. Albatross populations: status and threats. In Robertson, G. & Gales, R., eds. Albatross biology and conservation. Chipping Norton: Surrey Beatty & Sons, 2045.Google Scholar
Gales, R., Brothers, N. & Reid, T. 1998. Seabird mortality in the Japanese tuna longline fishery around Australia, 1988–1995. Biological Conservation, 86, 3756.CrossRefGoogle Scholar
Gandini, P., Frere, E., García, M.F. & Seco Pon, J.P. 2009. Sexual size dimorphism in black-browed albatross (Diomedea melanophris) incidentally killed during longline operations. El Hornero, 24, 4346.CrossRefGoogle Scholar
Hedd, A., Gales, R. & Brothers, N. 1998. Reliability of morphometric measures for determining the sex of adult and fledgling shy albatrosses, Diomedea cauta cauta, in Australia. Wildlife Research, 25, 6979.CrossRefGoogle Scholar
Jiménez, S., Phillips, R.A., Brazeiro, A., Defeo, O. & Domingo, A. 2014. Bycatch of great albatrosses in pelagic longline fisheries in the south-west Atlantic: contributing factors and implications for management. Biological Conservation, 171, 920.CrossRefGoogle Scholar
Jiménez, S., Domingo, A., Brazeiro, A., Defeo, O., Wood, A.G., Froy, H., Xavier, J.C. & Phillips, R.A. 2016. Sex-related variation on the vulnerability of wandering albatross to pelagic longline fleets. Animal Conservation, 19, 281–295.Google Scholar
Marchant, S. & Higgins, P.J., eds. 1990. Handbook of Australian, New Zealand & Antarctic birds. Volume 1: ratites to ducks. Part A: ratites to petrels. Melbourne: Oxford University Press, 282289.Google Scholar
Mills, M.S.L. & Ryan, P.G. 2005. Modelling impacts of long-line fishing: what are the effects of pair-bond disruption and sex-biased mortality on albatross fecundity? Animal Conservation, 8, 359367.CrossRefGoogle Scholar
Moore, P.J. & Bettany, S.M. 2005. Band recoveries of southern royal albatrosses (Diomedea epomophora) from Campbell Island, 1943–2003. Notornis, 52, 195205.Google Scholar
Nicholls, D.G. 2007. Plumages of northern (Diomedea sanfordi) and southern royal (D. epomophora) albatrosses observed in Chilean seas in September 2004. Notornis, 54, 158167.Google Scholar
Nicholls, D.G., Robertson, C.J.R., Prince, P.A., Murray, M.D., Walker, K.J. & Elliott, G.P. 2002. Foraging niches of three Diomedea albatrosses. Marine Ecology Progress Series, 231, 269277.CrossRefGoogle Scholar
Onley, D. & Scofield, P. 2007. Albatrosses, petrels and shearwaters of the world. Princeton, NJ: Princeton University Press, 240 pp.Google Scholar
Phillips, R.A. 2013. Requisite improvements to the estimation of seabird by-catch in pelagic longline fisheries. Animal Conservation, 16, 157158.CrossRefGoogle Scholar
Phillips, R.A. & Furness, R.W. 1997. Predicting the sex of parasitic jaegers by discriminant analysis. Colonial Waterbirds, 20, 1423.CrossRefGoogle Scholar
Phillips, R.A., Croxall, J.P., Silk, J.R.D. & Briggs, D.R. 2008. Foraging ecology of albatrosses and petrels from South Georgia: two decades of insights from tracking technologies. Aquatic Conservation - Marine and Freshwater Ecosystems, 17, S6S21.CrossRefGoogle Scholar
Prince, P.A., Wood, A.G., Barton, T. & Croxall, J.P. 1992. Satellite tracking of wandering albatrosses (Diomedea exulans) in the South Atlantic. Antarctic Science, 4, 3136.CrossRefGoogle Scholar
Robertson, C.J.R. & Nunn, G.B. 1998. Towards a new taxonomy for albatrosses. In Robertson, G. & Gales, R., eds. Albatross biology and conservation. Chipping Norton: Surrey Beatty & Sons, 1319.Google Scholar
Robertson, C.J.R., Bell, E.A., Sinclair, N. & Bell, B.D. 2003. Distribution of seabirds from New Zealand that overlap with fisheries worldwide. Science for Conservation 233. Wellington: New Zealand Department of Conservation, 22 pp.Google Scholar
Ryan, P.G. 1999. Sexual dimorphism, moult and body condition of seabirds killed by longline vessels around the Prince Edward Islands, 1996–97. Ostrich, 70, 187192.CrossRefGoogle Scholar
Shaffer, S.A., Weimerskirch, H. & Costa, D.P. 2001. Functional significance of sexual dimorphism in wandering albatrosses, Diomedea exulans . Functional Ecology, 15, 203210.CrossRefGoogle Scholar
Suryan, R.M., Anderson, D.J., Shaffer, S.A., Roby, D.D., Tremblay, Y., Costa, D.P., Sievert, P.R., Sato, F., Ozaki, K., Balogh, G.R. & Nakamura, N. 2008. Wind, waves, and wing loading: morphological specialization may limit range expansion of endangered albatrosses. PLoS ONE, 3, 10.1371/journal.pone.0004016.Google Scholar
Thalmann, S., Baker, B., Hindell, M., Double, M.C. & Gales, R. 2007. Using biometric measurements to determine gender of flesh-footed shearwaters, and their application as a tool in long-line by-catch management and ecological field studies. Emu, 107, 231238.CrossRefGoogle Scholar
Thomas, B., Minot, E.O. & Holland, J.D. 2010. Fledging behaviour of juvenile northern royal albatrosses (Diomedea sanfordi): a GPS tracking study. Notornis, 57, 135147.Google Scholar
Tickell, W.L.N. 2000. Albatrosses. Mountfield: Pica Press, 448 pp.Google Scholar
Walker, K. & Elliott, G. 1999. Population changes and biology of the wandering albatross Diomedea exulans gibsoni at the Auckland Islands. Emu, 99, 239247.CrossRefGoogle Scholar
Warham, J. 1996. The behaviour, population biology and physiology of the petrels. London: Academic Press, 613 pp.Google Scholar
Waugh, S., Troup, C., Filippi, D. & Weimerskirch, H. 2002. Foraging zones of Southern Royal albatrosses. Condor, 104, 662667.CrossRefGoogle Scholar
Waugh, S.M., MacKenzie, D.I. & Fletcher, D. 2008. Seabird bycatch in New Zealand trawl and longline fisheries, 1998–2004. Papers and Proceedings of the Royal Society of Tasmania, 142, 4566.CrossRefGoogle Scholar
Weimerskirch, H. & Jouventin, P. 1987. Population dynamics of the wandering albatross, Diomedea exulans, of the Crozet Islands: causes and consequences of the population decline. Oikos, 49, 315322.Google Scholar
Westerskov, K.E. 1960. Field identification and sex determination of the Royal Albatross. Notornis, 9, 120.Google Scholar
Xavier, J.C. & Croxall, J.P. 2005. Sexual differences in foraging behaviour and diets: a case study of wandering albatrosses. In Ruckstuhl, K.E. & Neuhaus, P., eds. Sexual segregation in vertebrates: ecology of the two sexes. Cambridge: Cambridge University Press, 7491.Google Scholar
Zuur, A.F., Ieno, E.N. & Smith, G.M. 2007. Analysing ecological data. New York, NY: Springer, 700 pp.CrossRefGoogle Scholar
Supplementary material: PDF

Jiménez supplementary material

Jiménez supplementary material

Download Jiménez supplementary material(PDF)
PDF 457.1 KB