Skip to main content Accessibility help
×
Home
Hostname: page-component-59b7f5684b-j5sqr Total loading time: 0.567 Render date: 2022-09-30T06:41:32.182Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Recent advances in understanding Antarctic climate evolution

Published online by Cambridge University Press:  23 January 2008

Martin J. Siegert*
Affiliation:
School of GeoSciences, University of Edinburgh, Grant Institute, Edinburgh EH9 3JW, UK
Peter Barrett
Affiliation:
Antarctic Research Centre, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
Robert DeConto
Affiliation:
Department of Geosciences, 611 North Pleasant Street, 233 Morrill Science Center, University of Massachusetts, Amherst, MA 01003-9297, USA
Robert Dunbar
Affiliation:
Department of Geological and Environmental Sciences, 325 Braun Hall (bldg. 320), Stanford University, Stanford, CA 94305-2115, USA
Colm Ó Cofaigh
Affiliation:
Department of Geography, Durham University, Science Site, South Road, Durham DH1 3LE, UK
Sandra Passchier
Affiliation:
Department of Earth and Environmental Studies, Mallory Hall 252, Montclair State University, Montclair, NJ 07043, USA
Tim Naish
Affiliation:
Antarctic Research Centre, Victoria University of Wellington, PO Box 600, Wellington, New Zealand Institute of Geological and Nuclear Sciences, PO Box 30368, Lower Hutt, New Zealand

Abstract

Geological evidence shows that the ice sheet and climate in Antarctica has changed considerably since the onset of glaciation around 34 million years ago. By analysing this evidence, important information concerning processes responsible for ice sheet growth and decay can be determined, which is vital for appreciating future changes in Antarctica. Geological records are diverse and their analyses require a variety of techniques. They are, however, essential for the establishment of hypotheses regarding past Antarctic changes. Numerical models of ice and climate are useful for testing such hypotheses, and in recent years there have been several advances in our knowledge relating to ice sheet history gained from these tests. This paper documents five case studies, employing a full range of techniques, to exemplify recent insights into Antarctic climate evolution from modelling ice sheet inception in the earliest Oligocene to quantifying Neogene ice sheet fluctuations and process-led investigations of recent (last glacial) changes.

Type
Review
Copyright
Copyright © Antarctic Science Ltd 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, J.B. 1999. Antarctic marine geology. Cambridge: Cambridge University Press, 297 pp.CrossRefGoogle Scholar
Anderson, J.B., Shipp, S.S., Lowe, A.L., Wellner, J.S. & Mosola, A.B. 2002. The Antarctic ice sheet during the last glacial maximum and its subsequent retreat history: a review. Quaternary Science Reviews, 21, 4970.CrossRefGoogle Scholar
Anderson, J.B., Wellner, J.S., Bohaty, S., Manley, P.L. & Wise, S.W. Jr 2006. Antarctic Shallow Drilling Project provides key core samples. Eos Transactions AGU, 87, 402.CrossRefGoogle Scholar
Barker, P.F. & Burrell, J. 1977. The opening of Drake Passage. Marine Geology, 25, 1534.CrossRefGoogle Scholar
Barrett, P.J. 1996. Antarctic palaeoenvironment through Cenozoic times - a review. Terra Antartica, 3, 103119.Google Scholar
Barrett, P.J. 2007. Cenozoic climate and sea level history from glacimarine strata off the Victoria Land coast, Cape Roberts Project, Antarctica. In Hambrey, M.J., Christoffersen, P., Glasser, N.F. & Hubbard, B., eds. Glacial Processes and Products. International Association of Sedimentologists, Special Publication, 39, 259287.Google Scholar
Bart, P.J., De Batist, M. & Jokat, W. 1999. Interglacial collapse of Crary Trough Mouth fan, Weddell Sea, Antarctica; implications for Antarctic glacial history. Journal of Sedimentary Research, 69, 12761289.CrossRefGoogle Scholar
Bart, P.J., Anderson, J.B., Trincardi, F. & Shipp, S.S. 2000. Seismic data from the northern basin, Ross Sea, record extreme expansions of the East Antarctic Ice Sheet during the late Neogene. Marine Geology, 166, 3150.CrossRefGoogle Scholar
Berkman, P.A. & Forman, S.L. 1996. Pre-bomb radiocarbon and the reservoir correction for calcareous marine species in the Southern Ocean. Geophysical Research Letters, 23, 363366.CrossRefGoogle Scholar
Bohaty, S.M. & Harwood, D.M. 1998. Southern Ocean paleotemperature variation from high-resolution silicoflagellate biostratigraphy. Marine Micropaleontology, 33, 241272.CrossRefGoogle Scholar
Brachfeld, S., Domack, E., Kissel, C., Laj, C., Leventer, A., Ishman, S., Gilbert, R., Camerlenghi, A. & Eglington, L.B. 2003. Holocene history of the Larsen-A Ice Shelf constrained by geomagnetic paleointensity dating. Geology, 31, 749752.CrossRefGoogle Scholar
Camerlenghi, A., Domack, E., Rebesco, M., Gilbert, R., Ishman, S., Leventer, A., Brachfield, S. & Drake, A. 2001. Glacial morphology and post-glacial contourites in northern Prince Gustav Channel (NW Weddell Sea, Antarctica). Marine Geophysical Research, 22, 417443.CrossRefGoogle Scholar
Canals, M., Urgeles, R. & Calafat, A.M. 2000. Deep sea-floor evidence of past ice streams off the Antarctic Peninsula. Geology, 28, 3134.2.0.CO;2>CrossRefGoogle Scholar
Canals, M., Casamor, J.L., Urgeles, R., Calafat, A.M., Domack, E.W., Baraza, J., Farran, M. & De Batist, M. 2002. Seafloor evidence of a subglacial sedimentary system off the northern Antarctic Peninsula. Geology, 30, 603606.2.0.CO;2>CrossRefGoogle Scholar
Coxall, H.K., Wilson, P.A., Pälike, H., Lear, C. & Backman, J. 2005. Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean. Nature, 433, 5357.CrossRefGoogle ScholarPubMed
Crosta, X., Crespin, J., Billy, I. & Ther, O. 2005. Major factors controlling Holocene δ13Corg change in a seasonal sea-ice environment, Adélie Land, East Antarctica. Global Biogeochemical Cycles, 19, 10.1029/2004GB002426.CrossRefGoogle Scholar
Crowley, T.J. & Kim, K.-Y. 1995. Comparison of longterm greenhouse projections with the geologic record. Geophysical Research Letters, 22, 933936.CrossRefGoogle Scholar
Davis, C., Yonghong, L., McConnell, J.R., Frey, M.M. & Hanna, E. 2005. Snowfall-driven growth in East Antarctic Ice Sheet mitigates recent sea-level rise. Science, 308, 18981901.CrossRefGoogle ScholarPubMed
DeConto, R.M. & Pollard, D. 2003a. A coupled climate-ice sheet modeling approach to the early Cenozoic history of the Antarctic ice sheet. Palaeogeography Palaeoclimatology Palaeoecology, 198, 3953.CrossRefGoogle Scholar
DeConto, R.M. & Pollard, D. 2003b. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature, 421, 245249.CrossRefGoogle ScholarPubMed
DeConto, R.M., Pollard, D. & Harwood, D. 2007. Sea ice feedback and Cenozoic evolution of Antarctic climate and ice sheets. Paleoceanography, 22, art. no. PA3214.CrossRefGoogle Scholar
Denton, G.H., Prentice, M.L., Kellogg, D.E. & Kellogg, T.B. 1984. Late Tertiary history of the Antarctic ice sheet: evidence from the Dry Valleys. Geology, 12, 263267.2.0.CO;2>CrossRefGoogle Scholar
Domack, E.W., Jull, A.J.T. & Donahue, D.J. 1991. Holocene chronology for the unconsolidated sediments at Hole 740 A; Prydz Bay, East Antarctica. In Barron, J., Larsen, B. & Shipboard Scientific Party. Kerguelen Plateau–Pydz Bay. Proceedings of the Ocean Drilling Program, Scientific Results, 119, 747750.Google Scholar
Domack, E.W., Jull, A.J.T., Anderson, J.B., Linick, T.W. & Williams, C.R. 1989. Application of tandem accelerator mass-spectrometer dating to Late Pleistocene–Holocene sediments of the East Antarctic continental shelf. Quaternary Research, 31, 277287.CrossRefGoogle Scholar
Domack, E., Leventer, A., Dunbar, R., Taylor, F., Brachfeld, S., Sjunneskog, C. & ODP Leg 178 Scientific Party. 2001. Chronology of the Palmer Deep site, Antarctic Peninsula: a Holocene palaeoenvironmental reference for the circum-Antarctic. The Holocene, 11, 19.CrossRefGoogle Scholar
Domack, E., Amblas, D., Gilbert, R., Brachfeld, S., Camerlenghi, A., Rebesco, M., Canals, M. & Urgeles, R. 2006. Subglacial morphology and glacial evolution of the Palmer Deep outlet system, Antarctic Peninsula. Geomorphology, 75, 125142.CrossRefGoogle Scholar
Dowdeswell, J.A., Ó Cofaigh, C. & Pudsey, C.J. 2004. Thickness and extent of the subglacial till layer beneath an Antarctic paleo-ice stream. Geology, 32, 1316.CrossRefGoogle Scholar
Dunbar, G.B., Naish, T.R., Barrett, P.J., Fielding, C.F. & Powell, R.D. In press. Constraining the amplitude of late Oligocene bathymetric changes in western Ross Sea during orbitally-induced oscillations in the East Antarctic Ice Sheet: (1) Implications for glacimarine sequence stratigraphic model. Palaeoclimatology, Palaeogeography, Palaeoecology.Google Scholar
Dunbar, R.B., Ravelo, A.C., Domack, E. & Leventer, A. 2002. Decadal-to-millennial oceanographic variability along the Antarctic Peninsula: ODP Site 1098 demonstrates strong solar forcing signals in the Southern Ocean. Eos Transactions AGU, 83, Fall Meeting Suppl., abstract PP22B-10.Google Scholar
Eldrett, J.S., Harding, I.C., Wilson, P.A., Butler, E. & Roberts, A.P. 2007. Continental ice in Greenland during the Eocene and Oligocene. Nature, 446, 176179.CrossRefGoogle ScholarPubMed
EPICA Community Members. 2004. Eight glacial cycles from an Antarctic ice core. Nature, 429, 623628.CrossRefGoogle Scholar
Evans, J., Dowdeswell, J.A., Ó Cofaigh, C., Benham, T.J. & Anderson, J.B. 2006. Extent and dynamics of the West Antarctic Ice Sheet on the outer continental shelf of Pine Island Bay during the last glaciation. Marine Geology, 230, 5372.CrossRefGoogle Scholar
Evans, J., Pudsey, C.J., Ó Cofaigh, C., Morris, P. & Domack, E. 2005. Late Quaternary glacial history, flow dynamics and sedimentation along the eastern margin of the Antarctic Peninsula Ice Sheet. Quaternary Science Reviews, 24, 741774.CrossRefGoogle Scholar
Exon, N., Kennett, J., Malone, M., Brinkhuis, H., Chaproniere, G., Ennyu, A., Fothergill, P., Fuller, M., Grauer, M., Hill, P., Janecek, T., Kelly, C., Latimer, J., McGonigal, K., Nees, S., Ninnemann, U., Nuernberg, D., Pekar, S., Pellaton, C., Pfuhl, H., Robert, C., Röhl, U., Schellenberg, S., Shevenell, A., Stickley, C., Suzuki, N., Touchard, Y., Wei, W. & White, T. 2002. Drilling reveals climatic consequences of Tasmanian Gateway opening. Eos, Transactions AGU, 83, 253, 258–259.CrossRefGoogle Scholar
Fairbanks, R.G. 1989. A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature, 342, 637642.CrossRefGoogle Scholar
Gilbert, R., Domack, E.W. & Camerlenghi, A. 2003. Deglacial history of the Greenpeace Trough: ice sheet to ice shelf transition in the northern Weddell Sea. Antarctic Research Series, 79, 195204.Google Scholar
Hambrey, M.J. & McKelvey, B.C. 2000a. Neogene fjordal sedimentation on the western margin of the Lambert Graben, East Antarctica. Sedimentology, 47, 577608.CrossRefGoogle Scholar
Hambrey, M.J. & McKelvey, B.C. 2000b. Major Neogene fluctuations of the East Antarctic ice sheet: stratigraphic evidence from the Lambert Glacier region. Geology, 28, 865960.2.0.CO;2>CrossRefGoogle Scholar
Harris, P.T. & O'Brien, P.E. 1998. Bottom currents, sedimentation and ice-sheet retreat facies successions on the Mac. Robertson shelf, East Antarctica. Marine Geology, 151, 4772.CrossRefGoogle Scholar
Harwood, D.M., Florindo, F., Levy, R.H., Fielding, C.R., Pekar, S.F., Speece, M.A. & SMS Science Team. 2006. Southern McMurdo Sound Prospectus, ANDRILL Contribution No. 5. Lincoln, NE: UNL, 32 pp. (www.andrill.org)Google Scholar
Haywood, A.M. & Valdes, P.J. 2004. Modelling Pliocene warmth: contribution of atmosphere, oceans and cryosphere. Earth and Planetary Science Letters, 218, 363377.CrossRefGoogle Scholar
Heroy, D. & Anderson, J.B. 2005. Ice-sheet extent of the Antarctic Peninsula region during the Last Glacial Maximum (LGM) - insights from glacial geomorphology. Geological Society of America Bulletin, 117, 14971512.CrossRefGoogle Scholar
Hicock, S.R., Barrett, P.J. & Holme, P.J. 2003. Fragment of an ancient outlet glacier system near the top of the Transantarctic Mountains. Geology, 31, 821824.CrossRefGoogle Scholar
Hill, D.J., Haywood, A.M., Hindmarsh, R.C.A. & Valdes, P.J. In press. Characterising ice sheets during the mid Pliocene: evidence from data and models, In Williams, M., Haywood, A.M., Gregory, J. & Schmidt, D., eds. Deep-time perspectives on climate change: marrying the signal from computer models and biological proxies. The Micropalaeontological Society Special Publications. The Geological Society of London.Google Scholar
Hillenbrand, C.-D., Baesler, A. & Grobe, H. 2005. The sedimentary record of the last glaciation in the western Bellingshausen Sea (West Antarctica): implications for the interpretation of diamictons in a polar-marine setting. Marine Geology, 216, 191204.CrossRefGoogle Scholar
Hodell, D.A. & Venz, K. 1992. Toward a high-resolution stable isotope record of the Southern Ocean during the Pliocene–Pleistocene (4.8 to 0.8 Ma). Antarctic Research Series, 56, 265310.CrossRefGoogle Scholar
Holbourn, A., Kuhnt, W., Schulz, M. & Erlrnkeuser, H. 2005. Impacts of orbital forcing and atmospheric carbon dioxide on Miocene ice-sheet expansion. Nature, 438, 483487.CrossRefGoogle ScholarPubMed
Huber, M., Brinkhuis, H., Stickley, C.E., Doos, K., Sluijs, A., Warnaar, J., Williams, G.L. & Schellenberg, S.A. 2004. Eocene circulation of the Southern Ocean: was Antarctica kept warm by subtropical waters? Paleoceanography, 19, 10..1029/2004PA001014.CrossRefGoogle Scholar
IPCC. 2001. Climate change 2001: the scientific basis. In Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Dai, X., Maskell, K. & Johnson, C.A., eds. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 944 pp.Google Scholar
IPCC. 2007. Climate change 2007 - the physical science basis. In Contribution of Working Group I to the Fourth Assessment Report of the IPCC. Cambridge: Cambridge University Press, 1009 pp.Google Scholar
Jezek, K.C. 2003. Observing the Antarctic ice sheet using the RADARSAT-1 synthetic aperture radar. Polar Geography, 27, 197209.CrossRefGoogle Scholar
Joseph, L.H., Rea, D.K., van der Pluijm, B.A. & Gleason, J.D. 2002. Antarctic environmental variability since the late Miocene: ODP Site 745, the East Kerguelen sediment drift. Earth and Planetary Science Letters, 201, 127142.CrossRefGoogle Scholar
Kennett, J.P. 1977. Cenozoic evolution of Antarctic glaciation, the circum-Antarctic oceans and their impact on global paleoceanography. Journal of Geophysical Research, 82, 38433859.CrossRefGoogle Scholar
Kennett, J.P. & Shackleton, N.J. 1976. Oxygen isotopic evidence for the development of the psychryosphere 38 my ago. Nature, 260, 513515.CrossRefGoogle Scholar
Lawver, L.A. & Gahagan, L.M. 1998. Opening of Drake Passage and its impact on Cenozoic ocean circulation, In Crowley, T.J. & Burke, K.C., eds. Tectonic boundary conditions for climate reconstructions. Oxford Monographs on Geology and Geophysics, Vol. 39. New York: Oxford University Press, 212223.Google Scholar
Le Brocq, A. 2007. Validating models of the West Antarctic Ice Sheet. PhD thesis, University of Bristol. [Unpublished].Google Scholar
Lear, C.H., Rosenthal, Y., Coxall, H.K. & Wilson, P.A. 2004. Late Eocene to early Miocene ice-sheet dynamics and the global carbon cycle. Paleoceanography, 19, 10.1029/2004PA001039.CrossRefGoogle Scholar
Leventer, A., Domack, E., Dunbar, R., Pike, J., Stickley, C., Maddison, E., Brachfeld, S., Manley, P. & McClennen, C. 2006. Marine sediment record of the deglaciation of the East Antarctic Margin. GSA Today, 16, 410.CrossRefGoogle Scholar
Licht, K.J., Jennings, A.E., Andrews, J.T. & Williams, K.M. 1996. Chronology of late Wisconsin ice retreat from the western Ross Sea, Antarctica. Geology, 24, 223226.2.3.CO;2>CrossRefGoogle Scholar
Livermore, R., Eagles, G., Morris, P. & Maldonado, A. 2004. Shackleton Fracture Zone: no barrier to early circumpolar ocean circulation. Geology, 32, 797800.CrossRefGoogle Scholar
Lowe, A.L. & Anderson, J.B. 2002. Reconstruction of the West Antarctic ice sheet in Pine Island Bay during the Last Glacial Maximum and its subsequent retreat history. Quaternary Science Reviews, 21, 18791897.CrossRefGoogle Scholar
Lowe, A.L. & Anderson, J.B. 2003. Evidence for abundant subglacial meltwater beneath the paleo-ice sheet in Pine Island Bay, Antarctica. Journal of Glaciology, 49, 125138.CrossRefGoogle Scholar
Maslin, M.A., Li, Z., Loutre, M.-F. & Berger, A. 1999. The contribution of orbital forcing to the progressive intensification of Northern Hemisphere glaciation. Quaternary Science Reviews, 17, 411426.CrossRefGoogle Scholar
McMullen, K., Domack, E.W., Leventer, A., Olson, C., Dunbar, R. & Brachfield, S. 2006. Glacial morphology and sediment formation in the Mertz Trough, East Antarctica. Palaeogeography, Palaeoclimatology and Palaeoecology, 231, 169180.CrossRefGoogle Scholar
Mikolajewicz, U., Maier-Reimer, E., Crowley, T.J. & Kim, K.-Y. 1993. Effect of Drake and Panamanian gateways on the circulation of an ocean model. Paleoceanography, 8, 409426.CrossRefGoogle Scholar
Mix, A.C. & Ruddiman, W.F. 1984. Oxygen isotopes and Pleistocene ice volumes. Quaternary Research, 21, 120.CrossRefGoogle Scholar
Mosola, A.B. & Anderson, J.B. 2006. Expansion and rapid retreat of the West Antarctic Ice Sheet in the eastern Ross Sea: possible consequences of over-extended ice streams? Quaternary Science Reviews, 25, 21772196.CrossRefGoogle Scholar
Naish, T.R., Levy, R.H., Powell, R.D. & MIS Project Science and Operations Team Members. 2006. Scientific logistics implementation plan for the ANDRILL McMurdo Ice Shelf Project. ANDRILL Contribution 7. Lincoln, NE: UNL, 117 pp. (www.andrill.org)Google Scholar
Naish, T.R., Wilson, G.S., Dunbar, G.B. & Barrett, P.J. In press. Constraining the amplitude of late Oligocene bathymetric changes in western Ross Sea during orbitally-induced oscillations in the East Antarctic Ice Sheet: (2) Implications for global glacio-eustasy. Palaeoclimatology, Palaeogeography, Palaeoecology.Google Scholar
Naish, T.R., Barrett, P.J., Dunbar, G.B., Woolfe, K.J., Dunn, A.G., Henrys, S.A., Claps, M., Powell, R.D. & Fielding, C.R. 2001a. Sedimentary cyclicity in CRP drillcore, Victoria Land Basin, Antarctica. Terra Antartica, 8, 225244.Google Scholar
Naish, T.R., Woolfe, K.J., Barrett, P.J., Wilson, G.S. & 29 others. 2001b. Orbitally induced oscillations in the East Antarctic ice sheet at the Oligocene–Miocene boundary. Nature, 413, 719723.CrossRefGoogle ScholarPubMed
Naish, T.R., Powell, R.D., Henrys, S., Wilson, G.S., Krissek, L.A., Niessen, F., Pompilio, M., Scherer, R., Talarico, F., Levy, R.H. & Pyne, A. 2007. Late Neogene climate history of the Ross Embayment: initial results from the ANDRILL McMurdo Ice Shelf Project. In Cooper, A.K., Raymond, C.R. & the ISAES team. Antarctica: a keystone in a changing world - online proceedings of the 10th ISAES, 10.3133/of2007-1047.Google Scholar
Nong, G.T., Najjar, R.G., Seidov, D. & Peterson, W. 2000. Simulation of ocean temperature change due to the opening of Drake Passage. Geophysical Research Letters, 27, 26892692.CrossRefGoogle Scholar
Ó Cofaigh, C., Evans, J., Dowdesell, J.A. & Larter, R.D. 2007. Till characteristics, genesis and transport beneath Antarctic paleo-ice streams. Journal of Geophysical Research (Earth Surface), 112, art. No. F03006.Google Scholar
Ó Cofaigh, C., Dowdeswell, J.A., Allen, C.S.A., Hiemstra, J., Pudsey, C.J., Evans, J. & Evans, D.J.A. 2005b, Flow dynamics and till genesis associated with a marine-based Antarctic palaeo-ice stream. Quaternary Science Reviews, 24, 709740.CrossRefGoogle Scholar
Ó Cofaigh, C., Pudsey, C.J., Dowdeswell, J.A. & Morris, P. 2002, Evolution of subglacial bedforms along a paleo-ice stream, Antarctic Peninsula continental shelf. Geophysical Research Letters, 29, 10.1029/2001GL014488.CrossRefGoogle Scholar
Ó Cofaigh, C., Larter, R.D., Dowdeswell, J.A., Hillenbrand, C.-D., Pudsey, C.J., Evans, J. & Morris, P. 2005a. Flow of the West Antarctic Ice Sheet on the continental margin of the Bellingshausen Sea at the Last Glacial Maximum. Journal of Geophysical Research, 110, 10.1029/2005JB003619.CrossRefGoogle Scholar
O'Brien, P.E & Harris, P.T. 1996. Patterns of glacial erosion in Prydz Bay and the past behaviour of the Lambert Glacier. Papers and Proceedings of the Royal Society of Tasmania, 130, 7985.Google Scholar
O'Brien, P.E., Cooper, A.K., Florindo, F., Handwerger, D., Lavelle, M., Passchier, S., Pospichal, J.J., Quilty, P.G., Richter, C., Theissen, K.M. & Whitehead, J.M. 2004. Prydz Channel Fan and the history of extreme ice advances in Prydz Bay. Proceedings ODP Initial Reports, 188, 10.2873/odp.proc.sr.188.016.2004.Google Scholar
O'Brien, P.E., Goodwin, I., Forsberg, C.-F., Cooper, A.K. & Whitehead, J. 2007. Late Neogene ice drainage changes in Prydz Bay, East Antarctica and the interaction of Antarctic ice sheet evolution and climate. Palaeogeography, Palaeoclimatology, Palaeoecology, 245, 390410.CrossRefGoogle Scholar
Pagani, M., Zachos, J.C., Freeman, K.H., Tipple, B. & Bohaty, S.M. 2005. Marked decline in atmospheric carbon dioxide concentrations during the Paleogene. Science, 309, 600603.CrossRefGoogle ScholarPubMed
Passchier, S. 2001. Provenance of the Sirius Group and related Upper Cenozoic glacial deposits from the Transantarctic Mountains, Antarctica: relation to landscape evolution and ice-sheet drainage. Sedimentary Geology, 144, 263290.CrossRefGoogle Scholar
Passchier, S. 2004. Variability in geochemical provenance and weathering history of Sirius Group strata, Transantarctic Mountains: implications for Antarctic glacial history. Journal of Sedimentary Research, 74, 607619.CrossRefGoogle Scholar
Passchier, S. 2007. East Antarctic ice-sheet dynamics between 5.2 and 0 Ma from a high-resolution terrigenous particle size record, ODP Site 1165, Prydz Bay-Cooperation Sea. In Cooper, A.K., Raymond, C.R. & the ISAES team. Antarctica: a keystone in a changing world - online proceedings of the 10th ISAES, 10.3133/of2007-1047.srp043.Google Scholar
Passchier, S. & Whitehead, J.M. 2006. Anomalous geochemical provenance and weathering history of Plio–Pleistocene glaciomarine fjord strata, Bardin Bluffs Formation, East Antarctica. Sedimentology, 53, 929942.CrossRefGoogle Scholar
Passchier, S., O'Brien, P.E., Damuth, J.E., Januszczack, N., Handwerger, D.A. & Whitehead, J.M. 2003. Pliocene–Pleistocene glaciomarine sedimentation in eastern Prydz Bay and development of the Prydz trough-mouth fan, ODP Sites 1166 and 1167, East Antarctica. Marine Geology, 199, 179305.CrossRefGoogle Scholar
Payne, A.J., Vieli, A., Shepherd, A., Wingham, D.J. & Rignot, E. 2004. Recent dramatic thinning of largest West-Antarctic ice stream triggered by oceans. Geophysical Research Letters, 31, L23401.CrossRefGoogle Scholar
Pekar, S.F. & DeConto, R.M. 2006 High-resolution ice-volume estimates for the early Miocene: evidence for a dynamic ice sheet in Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology, 231, 101109.CrossRefGoogle Scholar
Pekar, S., DeConto, R.M. & Harwood, D. 2006. Resolving a late Oligocene conundrum: deep sea warming and Antarctic glaciation. Palaeogeography Palaeoclimatology Palaeoecology, 231, 2949.CrossRefGoogle Scholar
Pollard, D. & DeConto, R.M. 2005. Hysteresis in Cenozoic Antarctic Ice Sheet variations. Global and Planetary Change, 45, 921.CrossRefGoogle Scholar
Pollard, D., DeConto, R.M. & Nyblade, A. 2005. Sensitivity of Cenozoic Antarctic ice sheet variations to geothermal heat flux. Global and Planetary Change, 49, 6374.CrossRefGoogle Scholar
Rebesco, M., Camerlenghi, A., Geletti, R. & Canals, M. 2006. Margin architecture reveals the transition to the modern Antarctic ice sheet ca. 3 Ma. Geology, 34, 301304.CrossRefGoogle Scholar
Ruddiman, W.F., Raymo, M.E., Martinson, D.G., Clement, B.M. & Backman, J. 1989. Mid-Pleistocene evolution of Northern Hemisphere climate. Paleoceanography, 4, 353412.CrossRefGoogle Scholar
Scher, H.D. & Martin, E.E. 2006. Timing and climatic consequences of the opening of Drake Passage. Science, 312, 428430.CrossRefGoogle ScholarPubMed
Sedwick, P.N., Harris, P.T., Robertson, L.G., McMurtry, G.M., Cremer, M.D. & Robinson, P. 1998. A geochemical study of marine sediments from the Mac. Robertson shelf, East Antarctica: initial results and palaeoenvironmental implications. Annals of Glaciology, 27, 268274.CrossRefGoogle Scholar
Sedwick, P.N., Harris, P.T., Robertson, L.G., McMurtry, G.M., Cremer, M.D. & Robinson, P. 2001. Holocene sediment records from the continental shelf of Mac.Robertson Land, East Antarctica. Paleoceanography, 16, 212225.CrossRefGoogle Scholar
Shackleton, N.J., Backman, J., Zimmerman, H., Kent, D.V., Hall, M.A., Roberts, D.G., Schnitker, D., Baldauf, J.G., Desprairies, A., Homrighausen, R., Huddlestun, P., Keene, J.B., Kaltenback, A.J., Krumsiek, K.A.O., Morton, A.C., Murray, J.W. & Westberg-Smith, J. 1984. Oxygen isotope calibration of the onset of ice-rafting and history of glaciation in the North Atlantic region. Nature, 307, 620623.CrossRefGoogle Scholar
Shipp, S.S., Wellner, J.S. & Anderson, J.B. 2002. Retreat signature of a polar ice stream: sub-glacial geomorphic features and sediments from the Ross Sea, Antarctica. In Dowdeswell, J.A. & Ó Cofaigh, C., eds. Glacier-influenced sedimentation on high-latitude continental margins. Geological Society, London, Special Publication, 203, 277304.Google Scholar
Siegert, M.J. & Dowdeswell, J.A. 1996. Spatial variations in heat at the base of the Antarctic Ice Sheet from analysis of the thermal regime above sub-glacial lakes. Journal of Glaciology, 42, 501509.CrossRefGoogle Scholar
Siegert, M.J., Carter, S., Tabacco, I., Popov, S. & Blankenship, D. 2005. A revised inventory of Antarctic subglacial lakes. Antarctic Science, 17, 453460.CrossRefGoogle Scholar
Stern, T.A., Baxter, A.K. & Barrett, P.J. 2005. Isostatic rebound due to glacial erosion within the Transantarctic Mountains. Geology, 33, 221224.CrossRefGoogle Scholar
Stickley, C.E., Pike, J., Leventer, J., Dunbar, R., Domack, E.W., Brachfeld, S., Manley, P. & McClennen, C. 2005. Deglacial ocean and climate seasonality in laminated diatom sediments, Mac. Robertson Shelf, Antarctica: Palaeogeography, Palaeoclimatology, Palaeoecology, 227, 290310.CrossRefGoogle Scholar
Stickley, C.E., Brinkhuis, H., Schellenberg, S.A., Sluijs, A., Röhl, U., Fuller, M., Grauert, M., Huber, M., Warnaar, J. & Williams, G.L. 2004. Timing and nature of the deepening of the Tasmanian Gateway. Paleoceanography, 19, 10.1029/2004PA001022.CrossRefGoogle Scholar
Stuiver, M., Reimer, P.J. & Reimer, R.W. 2005. CALIB 5.0.2., www program and documentation, http://www.calib.qub.ac.uk/.Google Scholar
Sugden, D.E. & Denton, G.H. 2004. Cenozoic landscape evolution of the Convoy Range to Mackay Glacier area, Transantarctic Mountains: Onshore to offshore synthesis. Geological Society of American Bulletin, 116, 840857.CrossRefGoogle Scholar
Taylor, J., Siegert, M.J., Payne, A.J., Hambrey, M.J., O'Brien, P.E., Cooper, A.K. & Leitchenkov, G. 2004. Topographic controls on post-Oligocene changes in ice-sheet dynamics, Prydz Bay region, East Antarctica. Geology, 32, 197200.CrossRefGoogle Scholar
Thorn, V. & DeConto, R.M. 2006. Antarctic climate at the Eocene/Oligocene boundary – climate model sensitivity to high latitude vegetation type and comparisons with the palaeobotanical record. Palaeogeography Palaeoclimatology Palaeoecology, 231, 134157.CrossRefGoogle Scholar
Toggweiler, J.R. & Bjornsson, H. 2000. Drake Passage and paleoclimate. Journal of Quaternary Science, 15, 319328.3.0.CO;2-C>CrossRefGoogle Scholar
Tripati, A., Backman, J., Elderfield, H. & Ferretti, P. 2005. Eocene bipolar glaciation associated with global carbon cycle changes. Nature, 436, 341346.CrossRefGoogle ScholarPubMed
van Beek, P., Reyss, J.-L., Paterne, M., Gersonde, R., van der Loeff, M.R. & Kuhn, G. 2002. 226Ra in barite: absolute dating of Holocene Southern Ocean sediments and reconstruction of sea-surface reservoir ages. Geology, 30, 731734.2.0.CO;2>CrossRefGoogle Scholar
Webb, P.N., Harwood, D.M., McKelvey, B.C., Mercer, J.H. & Stott, L.D. 1984. Cenozoic marine sedimentation and ice-volume variation on the East Antarctic craton. Geology, 12, 287291.2.0.CO;2>CrossRefGoogle Scholar
Wellner, J.S., Lowe, A.L., Shipp, S.S. & Anderson, J.B. 2001. Distribution of glacial geomorphic features on the Antarctic continental shelf and correlation with substrate: implications for ice behaviour. Journal of Glaciology, 47, 397411.CrossRefGoogle Scholar
Whitehead, J.M., Harwood, D.M. & McMinn, A. 2003. Ice-distal upper Miocene marine strata from inland Antarctica. Sedimentology, 50, 531552.CrossRefGoogle Scholar
Whitehead, J.M., Wotherspoon, S. & Bohaty, S.M. 2005. Minimal Antarctic sea ice during the Pliocene. Geology, 33, 137140.CrossRefGoogle Scholar
Whitehead, J.M., Ehrmann, W., Harwood, D.M., Hillenbrand, C.-D., Quilty, P.G., Hart, C., Taviani, M., Thorn, V. & McMinn, A. 2006. Late Miocene paleoenvironment of the Lambert Graben embayment, East Antarctica, evident from: mollusc paleontology, sedimentology and geochemistry. Global and Planetary Change, 50, 127147.CrossRefGoogle Scholar
Wise, S.W. Jr, Breza, J.R., Harwood, D.M., Wei, W. & Zachos, J. 1991. Paleogene glacial history of Antarctica. In McKenzie, J.A. & Weissert, H., eds. Controversies in modern geology; evolution of geological theories in sedimentology, Earth history and tectonics. London: Academic Press, 133171.Google Scholar
Zachos, J., Breza, J. & Wise, S.W. 1992. Early Oligocene ice-sheet expansion on Antarctica, sedimentological and isotopic evidence from Kerguelen Plateau. Geology, 20, 569573.2.3.CO;2>CrossRefGoogle Scholar
Zachos, J.C., Flower, B.P. & Paul, H. 1997. Orbitally paced climate oscillations across the Oligocene/Miocene boundary. Nature, 388, 567570.CrossRefGoogle Scholar
Zachos, J., Pagani, M., Sloan, L. & Thomas, E. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292, 686693.CrossRefGoogle ScholarPubMed
26
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Recent advances in understanding Antarctic climate evolution
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Recent advances in understanding Antarctic climate evolution
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Recent advances in understanding Antarctic climate evolution
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *