Skip to main content Accessibility help
×
Home
Hostname: page-component-747cfc64b6-5dv6l Total loading time: 0.276 Render date: 2021-06-15T07:47:37.205Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Evolution of the Cook Ice Cap (Kerguelen Islands) between the last centuries and 2100 ce based on cosmogenic dating and glacio-climatic modelling

Published online by Cambridge University Press:  06 April 2021

Deborah Verfaillie
Affiliation:
Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
Joanna Charton
Affiliation:
Aix Marseille Univ., CNRS, IRD, INRAE, Coll France, UM 34 CEREGE, Aix-en-Provence, France
Irene Schimmelpfennig
Affiliation:
Aix Marseille Univ., CNRS, IRD, INRAE, Coll France, UM 34 CEREGE, Aix-en-Provence, France
Zoe Stroebele
Affiliation:
Université Paris 1 Panthéon-Sorbonne, CNRS Laboratoire de Géographie Physique, Meudon, France
Vincent Jomelli
Affiliation:
Aix Marseille Univ., CNRS, IRD, INRAE, Coll France, UM 34 CEREGE, Aix-en-Provence, France
François Bétard
Affiliation:
Université de Paris, UFR Géographie, Histoire, Économie et Sociétés (GHES), Laboratoire PRODIG, UMR CNRS 8586, Paris, France
Vincent Favier
Affiliation:
Univ. Grenoble Alpes, IGE, CNRS, Grenoble, France
Julien Cavero
Affiliation:
Université Paris 1 Panthéon-Sorbonne, CNRS Laboratoire de Géographie Physique, Meudon, France
Etienne Berthier
Affiliation:
LEGOS, Université de Toulouse, CNES, CNRS, IRD, UPS, Toulouse, France
Hugues Goosse
Affiliation:
Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
Vincent Rinterknecht
Affiliation:
Aix Marseille Univ., CNRS, IRD, INRAE, Coll France, UM 34 CEREGE, Aix-en-Provence, France
Claude Legentil
Affiliation:
Université Paris 1 Panthéon-Sorbonne, CNRS Laboratoire de Géographie Physique, Meudon, France
Raphaelle Charrassin
Affiliation:
LEGOS, Université de Toulouse, CNES, CNRS, IRD, UPS, Toulouse, France
Georges Aumaître
Affiliation:
Aix Marseille Univ., CNRS, IRD, INRAE, Coll France, UM 34 CEREGE, Aix-en-Provence, France
Didier L. Bourlès
Affiliation:
Aix Marseille Univ., CNRS, IRD, INRAE, Coll France, UM 34 CEREGE, Aix-en-Provence, France
Karim Keddadouche
Affiliation:
Aix Marseille Univ., CNRS, IRD, INRAE, Coll France, UM 34 CEREGE, Aix-en-Provence, France
Corresponding

Abstract

The Cook Ice Cap (CIC) on the sub-Antarctic Kerguelen Islands recently experienced extremely negative surface mass balance. Further deglaciation could have important impacts on endemic and invasive fauna and flora. To put this exceptional glacier evolution into a multi-centennial-scale context, we refined the evolution of the CIC over the last millennium, investigated the associated climate conditions and explored its potential evolution by 2100 ce. A glaciological model, constrained by cosmic ray exposure dating of moraines, historical documents and recent direct mass balance observations, was used to simulate the ice-cap extents during different phases of advance and retreat between the last millennium and 2100 ce. Cosmogenic dating suggests glacial advance around the early Little Ice Age (LIA), consistent with findings from other sub-Antarctic studies, and the rather cold and humid conditions brought about by the negative phase of the Southern Annular Mode (SAM). This study contributes to our currently limited understanding of palaeoclimate for the early LIA in the southern Indian Ocean. Glaciological modelling and observations confirm the recent decrease in CIC extent linked to the intensification of the SAM. Although affected by large uncertainties, future simulations suggest a complete disappearance of CIC by the end of the century.

Type
Physical Sciences
Copyright
Copyright © Antarctic Science Ltd 2021

Access options

Get access to the full version of this content by using one of the access options below.

Footnotes

*

ASTER Team

Deceased

References

Abram, N.J., Mulvaney, R., Vimeux, F., Phipps, S.J., Turner, J. & England, M.H. 2014. Evolution of the Southern Annular Mode during the past millennium. Nature Climate Change, 4, 10.1038/nclimate2235.CrossRefGoogle Scholar
Aubert de la Rüe, E. 1932. Étude géologique et géographique de l'archipel de Kerguelen. Revue de Géographie Physique et de Géologie Dynamique, 5, 1231.Google Scholar
Aubert de la Rüe, E. 1967. Remarques sur la disparition des glaciers de la Péninsule Courbet (Archipel de Kerguelen). Terres Australes et Antarctiques Françaises, 40, 320.Google Scholar
Ballestracci, R. & Nougier, J. 1984. Detection by infrared thermography and modelling of an icecapped geothermal system in Kerguelen Archipelago. Journal of Volcanology and Geothermal Research, 20, 10.1016/0377-0273(84)90067-2.CrossRefGoogle Scholar
Berthier, E., Le Bris, R., Mabileau, L., Testut, L. & Rémy, F. 2009. Ice wastage on the Kerguelen Islands (49°S, 69°E) between 1963 and 2006. Journal of Geophysical Research - Earth Surface, 114, 10.1029/2008JF001192.CrossRefGoogle Scholar
Biette, M., Jomelli, V., Favier, V., Chenet, M., Agosta, C., Fettweiss, X., et al. 2018. Estimation des températures au début du dernier millénaire dans l'ouest du Groenland: résultats préliminaires issus de l'application d'un modèle glaciologique de type degré jour sur le glacier Lyngmarksbræen. Géomorphologie, 24, 10.4000/geomorphologie.11977.CrossRefGoogle Scholar
Blard, P.H., Lave, J., Pik, R., Wagnon, P. & Bourles, D. 2007. Persistence of full glacial conditions in the central Pacific until 15,000 years ago. Nature, 449, 10.1038/nature06142.CrossRefGoogle ScholarPubMed
Chapui, J.-L., Frenot, Y. & Lebouvier, M. 2004. Recovery of native plant communities after eradication of rabbits from the subantarctic Kerguelen Islands, and influence of climate change. Biological Conservation, 117, 10.1016/S0006-3207(03)00290-8.Google Scholar
Charton, J., Jomelli, V., Schimmelpfennig, I., Verfaillie, D., Favier, V., Mokadem, F., et al. 2020. A debris-covered glacier at Kerguelen (49°S, 69°E) over the past 15,000 years. Antarctic Science, 10.1017/S0954102020000541.Google Scholar
Durand de Corbiac, H. 1970. La carte de reconnaissance des îles Kerguelen. Bulletin du Comité National Français des Recherches Antarctiques, 26, 173.Google Scholar
Favier, V., Verfaillie, D., Berthier, E., Menegoz, M., Jomelli, V., Kay, J.E., et al. 2016. Atmospheric drying as the main driver of dramatic glacier wastage in the southern Indian Ocean. Scientific Reports, 6, 10.1038/srep32396.CrossRefGoogle ScholarPubMed
Frenot, Y., Gloaguen, J.-C., van de Vijver, B. & Beyens, L. 1997. Datation of some Holocene peat sediments and glacier fluctuations in the Kerguelen Islands. Comptes Rendus Académie Sciences, 320, 567573.CrossRefGoogle Scholar
Frenot, Y., Gloaguen, J.-C., Picot, G., Bougère, J. & Benjamin, D. 1993. Azorella selago Hook. used to estimate glacier fluctuations and climatic history in the Kerguelen Islands over the last two centuries. Oecologia, 95, 10.1007/BF00649517.CrossRefGoogle ScholarPubMed
Frenot, Y., Chown, S.L., Whinam, J., Selkirk, P.M., Convey, P., Skotnicki, M. & Bergstrom, D.M. 2005. Biological invasions in the Antarctic: extent, impacts and implications. Biological Reviews, 80, 10.1017/S1464793104006542.CrossRefGoogle ScholarPubMed
Ivy-Ochs, S., Kerschner, H., Maisch, M., Christl, M., Kubik, P.W. & Schlüchter, C. 2009. Latest Pleistocene and Holocene glacier variations in the European Alps. Quaternary Science Reviews, 28, 10.1016/j.quascirev.2009.03.009.CrossRefGoogle Scholar
Jomelli, V., Khodri, M., Favier, V., Brunstein, D., Ledru, M.P., Wagnon, P., et al. 2011. Irregular tropical glacial retreat during the Holocene driven by progressive warming. Nature, 474, 10.1038/nature10150.CrossRefGoogle Scholar
Jomelli, V., Mokadem, F., Schimmelpfennig, I., Chapron, E., Rinterknecht, V., Favier, V., et al. 2017. Sub-Antarctic glacier extensions in the Kerguelen region (49°S, Indian Ocean) over the past 23 000 years constrained by 36Cl moraine dating. Quaternary Science Reviews, 162, 10.1016/j.quascirev.2017.03.010.CrossRefGoogle Scholar
Krinner, G. & Flanner, M. 2018. Striking stationarity of large-scale climate model bias patterns under strong climate change. Proceedings of the National Academy of Sciences of the United States of America, 115, 10.1073/pnas.1807912115.Google ScholarPubMed
Lesel, R. 1967. Contribution à l'étude écologique de quelques mammifères importés aux îles Kerguelen. Terres Australes et Antarctiques Françaises, 38, 340.Google Scholar
Mann, M.E. 2002. Little Ice Age. In MacCracken, M.C. & Perry, J.S., eds. Encyclopedia of global environmental change, volume 1, the Earth system: physical and chemical dimensions of global environmental change. Chichester, John Wiley, 504509.Google Scholar
Merchel, S., Bremser, W., Alfimov, V., Arnold, M., Aumaître, G., Benedetti, L., et al. 2011. Ultra-trace analysis of 36Cl by accelerator mass spectrometry: an interlaboratory study. Analytical and Bioanalytical Chemistry, 400, 10.1007/s00216-011-4979-2.CrossRefGoogle ScholarPubMed
Moss, R.H., Edmonds, J.A., Hibbard, K.A., Manning, M.R., Rose, S.K., van Vuuren, D.P., et al. 2010. The next generation of scenarios for climate change research and assessment. Nature, 463, 10.1038/nature08823.CrossRefGoogle ScholarPubMed
Neukom, R., Gergis, J., Karoly, D., Wanner, H., Curran, M., Elbert, J., et al. 2014. Inter-hemispheric temperature variability over the last millennium. Nature Climate Change, 4, 10.1038/nclimate2174.CrossRefGoogle Scholar
Nougier, J. 1970. Contribution à l'étude géologique et géomorphologique des îles Kerguelen. PhD thesis, CNFRA, 441 pp. and 247 pp. + 1 inset map.Google Scholar
Oppedal, L.T., Bakke, J., Paasche, Ø., Werner, J.P. & van der Bilt, W.G.M. 2018. Cirque glacier on South Georgia shows centennial variability over the last 7000 years. Frontiers in Earth Science, 6, 10.3389/feart.2018.00002.CrossRefGoogle Scholar
Perren, B.B., Hodgson, D.A., Roberts, S.J., Sime, L., van Nieuwenhuyze, W., Verleyen, E., & Vyverman, W. 2020. Southward migration of the Southern Hemisphere westerly winds corresponds with warming climate over centennial timescales. Communications Earth & Environment, 1, 10.1038/s43247-020-00059-6.CrossRefGoogle Scholar
Poggi, A. 1977. Heat balance in ablation area of Ampere Glacier (Kerguelen Islands). Journal of Applied Meteorology and Climatology, 16, 10.1175/1520-0450(1977)016<0048:HBITAA>2.0.CO;2.Google Scholar
Protin, M., Schimmelpfennig, I., Mugnier, J.-L., Ravanel, L., le Roy, M., Deline, P., et al. 2019. Climatic reconstruction for the Younger Dryas/Early Holocene transition and the Little Ice Age based on paleo-extents of Argentière glacier (French Alps). Quaternary Science Reviews, 221, 10.1016/j.quascirev.2019.105863.CrossRefGoogle Scholar
Putnam, A., Schaefer, J., Denton, G., Barrell, D.J.A., Finkel, R.C., Andersen, B.G., et al. 2012. Regional climate control of glaciers in New Zealand and Europe during the pre-industrial Holocene. Nature Geoscience, 5, 10.1038/ngeo1548.CrossRefGoogle Scholar
Raup, B.H., Racoviteanu, A., Khalsa, S.J.S., Helm, C., Armstrong, R. & Arnaud, Y. 2007. The GLIMS geospatial glacier database: a new tool for studying glacier change. Global and Planetary Change, 56, 10.1016/j.gloplacha.2006.07.018.CrossRefGoogle Scholar
Reynhout, S.A., Sagredo, E.A., Kaplan, M.R., Aravena, J.C., Martini, M.A., Moreno, P.I., et al. 2019. Holocene glacier fluctuations in Patagonia are modulated by summer insolation intensity and paced by Southern Annular Mode-like variability. Quaternary Science Reviews, 220, 10.1016/j.quascirev.2019.05.029.CrossRefGoogle Scholar
Schaefer, J.M., Denton, G.H., Kaplan, M., Putnam, A., Finkel, R.C., Barrell, D.J.A., et al. 2009. High-frequency Holocene glacier fluctuations in New Zealand differ from the northern signature. Science, 324, 10.1126/science.1169312.CrossRefGoogle ScholarPubMed
Smith, T.M. & Reynolds, R.W. 2004. Improved extended reconstruction of SST (1854–1997). Journal of Climate, 17, 10.1175/1520-0442(2004)017<2466:IEROS>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Solomina, O.N., Bradley, R.S., Hodgson, D.A., Ivy-Ochs, S., Jomelli, V., Mackintosh, A.N., et al. 2015. Holocene glacier fluctuations. Quaternary Science Reviews, 111, 10.1016/j.quascirev.2014.11.018.CrossRefGoogle Scholar
Taylor, K., Stouffer, R. & Meehl, G. 2012. An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93, 10.1175/BAMS-D-11-00094.1.CrossRefGoogle Scholar
Vallon, M. 1977a. Bilan de masse et fluctuations récentes du Glacier Ampère (Iles Kerguelen, TAAF). Zeitschrift für Gletscherkunde und Glazialgeologie, 13, 5585.Google Scholar
Vallon, M. 1977b. Topographie sous glaciaire du Glacier Ampère (Iles Kerguelen, TAAF). Zeitschrift für Gletscherkunde und Glazialgeologie, 13, 3755.Google Scholar
Verfaillie, D., Favier, V., Gallée, H., Fettweis, X., Agosta, C. & Jomelli, V. 2019. Regional modeling of surface mass balance on the Cook Ice Cap, Kerguelen Islands (49°S, 69°E). Climate Dynamics, 53, 10.1007/s00382-019-04904-z.CrossRefGoogle Scholar
Verfaillie, D., Favier, V., Dumont, M., Jomelli, V., Gilbert, A., Brunstein, D., et al. 2015. Recent glacier decline in the Kerguelen Islands (49°S, 69°E) derived from modeling, field observations, and satellite data. Journal of Geophysical Research Earth Surface, 120, 10.1002/2014JF003329.CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Evolution of the Cook Ice Cap (Kerguelen Islands) between the last centuries and 2100 ce based on cosmogenic dating and glacio-climatic modelling
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Evolution of the Cook Ice Cap (Kerguelen Islands) between the last centuries and 2100 ce based on cosmogenic dating and glacio-climatic modelling
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Evolution of the Cook Ice Cap (Kerguelen Islands) between the last centuries and 2100 ce based on cosmogenic dating and glacio-climatic modelling
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *