Skip to main content Accessibility help
×
Home
Hostname: page-component-564cf476b6-4htn5 Total loading time: 0.134 Render date: 2021-06-19T20:07:09.866Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Article contents

Estimating divergence times of notothenioid fishes using a fossil-calibrated molecular clock

Published online by Cambridge University Press:  27 February 2004

THOMAS J. NEAR
Affiliation:
Department of Ecology and Evolutionary Biology, 569 Dabney Hall, University of Tennessee, Knoxville, TN 37996-1610, USA, tnear@utk.edu

Abstract

Hypotheses concerning the diversification of notothenioid fishes have relied extensively on estimates of divergence times using molecular clock methods. The timing of diversification of the cold adapted antifreeze glycoprotein (AFGP)-bearing Antarctic notothenioid clade in the middle to late Miocene has been correlated with the onset of polar climatic conditions along the Antarctic Continental Shelf. Critical examination of the previous molecular clock analyses of notothenioids reveals several problems associated with heterogeneity of nucleotide substitution rates among lineages, the application of potentially inappropriate nucleotide substitution rates, and the lack of confidence intervals for divergence time estimates. In this study, the notothenioid partial gene mtDNA 12S-16S rRNA (PG-rRNA) molecular clock was reanalysed using a tree-based maximum likelihood strategy that attempts to account for rate heterogeneity of nucleotide substitution rates among lineages using the penalized likelihood method, and bootstrap resampling to estimate confidence intervals of divergence time estimates. The molecular clock was calibrated using the notothenioid fossil Proeleginops grandeastmanorum. Divergence time estimates for all nodes in the PG-rRNA maximum likelihood tree were substantially older than previous estimates. In particular, the estimated age of the AFGP-bearing Antarctic notothenioid clade predates the onset of extensive sea ice and development of polar conditions by at least 10 million years. Despite caveats involving the fossil calibration and limitations of the PG-rRNA dataset, these divergence time estimates provide initial observations for the development of a novel model of the diversification of cold adapted Antarctic notothenioid fishes.

Type
Research Article
Copyright
© Antarctic Science Ltd 2004

Access options

Get access to the full version of this content by using one of the access options below.
91
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Estimating divergence times of notothenioid fishes using a fossil-calibrated molecular clock
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Estimating divergence times of notothenioid fishes using a fossil-calibrated molecular clock
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Estimating divergence times of notothenioid fishes using a fossil-calibrated molecular clock
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *