Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-12-08T11:56:38.897Z Has data issue: false hasContentIssue false

Seasonal age distributions and maturity stage in a naturalized rainbow trout (Oncorhynchus mykiss Walbaum) population in southern Chile reveal an ad-fluvial life history

Published online by Cambridge University Press:  22 June 2011

Ivan Arismendi*
Affiliation:
Escuela de Graduados, Facultad de Ciencias Forestales, Universidad Austral de Chile, Casilla #567 Valdivia, Chile Current address: Department of Geosciences, Oregon State University, 3200 SW Jefferson Way, Corvallis, OR 97331, USA
Jose Sanzana
Affiliation:
Darwin Initiative, Laboratorio de Genética, Acuicultura y Biodiversidad, Universidad de Los Lagos, Avenida Fuschlocher 1305, Osorno, Chile
Doris Soto
Affiliation:
Inland Water Resources and Aquaculture Service (FIRI), Fisheries Department, FAO of United Nations, Via delle Terme di Caracalla, 00100 Rome, Italy
*
*Corresponding author: Ivan.Arismendi@oregonstate.edu
Get access

Abstract

Rainbow trout is one of the most popular introduced game species around the world. Similar patterns of use for lake and inlet streams have been described for both native and introduced populations. However, for many introduced rainbow trout populations, there is a lack of information about how and when those habitats have been used. Here, we hypothesized that the majority of adult and sexually mature individuals inhabit inlet streams during the reproductive period most likely to spawn whereas juvenile trout occupy these same streams as nursery areas most of the year before emigrating to the lake. We studied rainbow trout age distribution and sexual maturity in a lake and its main inlet streams in southern Chile. We found that stream-dwelling individuals inhabited inlet streams up to age 2+ whereas lake-dwelling trout were older (most of them from ages 4+ to 6+). During the reproductive period (May to September) older and sexually mature individuals were in both habitats probably indicating movement to upstream locations to spawn. Rainbow trout of the same ages were larger in the lake than in streams, which may imply better growth in the lenthic environment. Our study offers further evidence of the highly adaptable nature of rainbow trout. Future regulations should consider rainbow trout populations in lakes and streams separately because trout life histories suggest that both environments are important to different ontogenic stages. This study provides key information that may be useful in the management of ad-fluvial populations of rainbow trout in Patagonia.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arismendi, I. and Nahuelhual, L., 2007. Non-native salmon and trout recreational fishing in Lake Llanquihue, southern Chile: Economic benefits and management implications. Rev. Fish. Sci., 15, 311325.CrossRefGoogle Scholar
Arismendi, I., Soto, D., Penaluna, B., Jara, C., Leal, C. and León-Muñoz, J., 2009. Aquaculture, non-native salmonid invasions, and associated declines of native fishes in lakes of the northern Chilean Patagonia. Freshwater Biol., 54, 11351147.CrossRefGoogle Scholar
Basulto, S., 2003. El Largo viaje de los salmones: una crónica olvidada, Propagación y cultivo de especies acuáticas en Chile, Editorial Maval Ltda, Santiago, 299 p.Google Scholar
Behnke, R.J., 1992. Native trout of western North America, American Fisheries Society (AFS) Monograph 6, American Fisheries Society, Bethesda, MD, 275 p.Google Scholar
Campos, H., 1986. Productividad íctica de ríos y lagos Araucanos. In: Vila, I. and Fagetti, E. (eds.), Trabajos presentados al Taller Internacional sobre ecología y manejo de peces en lagos y embalses, Santiago, Chile, 5–10 de noviembre de 1984, COPESCAL Doc. Téc. 4, 237 p.Google Scholar
Campos, H., Steffen, W., Agüero, G., Parra, O. and Zuñiga, L., 1988. Limnological study of Lake Llanquihue (Chile), morphometry, physics, chemistry, plankton and primary productivity. Arch. Hydrobiol., Suppl., 81, 3767.Google Scholar
Chugunova, N.I., 1959. Age and growth studies in fish. A systematic guide for ichthyologist (Translated from Russian), National Science Foundation, Washington, DC, USA, Israel Programs for Scientific Translations, Jerusalem (1963), 132 p.Google Scholar
Crawford, S.S., 2001. Salmonine introductions to the Laurentian Great Lakes: an historical review and evaluation of ecological effects. Canadian Special Publication of Fisheries and Aquatic Sciences, 132, 205 p.Google Scholar
Crawford, S.S. and Muir, A.M., 2008. Global introductions of salmon and trout in the genus Oncorhynchus: 1870–2007. Rev. Fish. Biol. Fisher., 18, 313344.CrossRefGoogle Scholar
Davis, N.D. and Light, J.T., 1985. Steelhead age determination techniques, Fisheries Research Institute, Technical Report FRI-UW-8506, University of Washington, Seattle, 41 p.Google Scholar
Dedual, M., Maxwell, I.D., Hayes, J.W. and Strickland, R.R., 2000. Distribution and movements of brown (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) in Lake Otamangakau, Central North Island, New Zealand. N. Z. J. Mar. Fresh., 34, 615627.CrossRefGoogle Scholar
Fraser, C.M., 1916. Growth of the spring salmon. Am. Fish. Soc., 1915, 2939.Google Scholar
Graynoth, E., 1996. Determination of the age of brown and rainbow trout in a range of New Zealand lakes. Mar. Freshwater Res., 47, 749756.CrossRefGoogle Scholar
Hayes, J.W., 1988. Mortality and growth of juvenile brown and rainbow trout in a lake inlet nursery stream. N. Z. J. Mar. Freshw. Res., 22, 169179.CrossRefGoogle Scholar
Isermann, D.A. and Knight, C., 2005. A computer program for age–length keys incorporating age assignment to individual fish. N. Am. J. Fish. Manage., 25, 11531160.CrossRefGoogle Scholar
Lee, R.M., 1920. A review of the methods of age and growth determination in fishes by means of scales, Fishery Investigations Series Vol. 4, Marine Fisheries, Great Britain Ministry of Agriculture, Fisheries and Food, London, 32 p.Google Scholar
Lindsay, C.C., Northcote, T.G. and Hartman, G.F., 1959. Homing of rainbow trout to inlet and outlet spawning streams at Loon Lake, British Columbia. J. Fish. Res. Board Can., 16, 695719.CrossRefGoogle Scholar
Marr, S.M., Marchetti, M.P., Olden, J.D., Garcia-Berthou, E., Morgan, D.L., Arismendi, I., Day, J.A., Griffiths, C.L. and Skelton, P.H., 2010. Freshwater fish introductions in mediterranean-climate regions: are there commonalities in the conservation problem? Divers. Distrib., 16, 606619.CrossRefGoogle Scholar
Mellina, E., Hinch, S.G., Mackenzie, K.D. and Pearson, G., 2005. Seasonal movement patterns of stream-dwelling rainbow trout in north-central British Columbia, Canada. Am. Fish. Soc., 134, 10211037.CrossRefGoogle Scholar
Niemeyer, H. and Cereceda, P., 1984. Hidrografía. Colección Geográfica de Chile, Tomo VIII, Instituto Geográfico Militar (IGM), Santiago, Chile, 320 p.Google Scholar
Northcote, T.G., 1962. Migratory behaviour of juvenile rainbow trout, Salmo gairdneri, in outlet and inlet streams of Loon Lake, British Columbia. J. Fish. Res. Board Can., 19, 201270.CrossRefGoogle Scholar
Northcote, T.G., 1992. Migration and residency in stream salmonids: some ecological considerations and evolutionary consequences. Nord. J. Fresh. Res., 67, 517.Google Scholar
Northcote, T.G., 1997. Potamodromy in Salmonidae-living and moving in the fast lane. N. Am. J. Fish. Manage., 17, 10291045.2.3.CO;2>CrossRefGoogle Scholar
Palma, R., 1996. Ensambles de peces en el Lago Llanquihue y su respuesta frente a la perturbación producida por la salmonicultura, Tesis de Magister en Ciencias con Mención en Limnología, Universidad Austral de Chile, Facultad de Ciencias, Valdivia, 93 p.Google Scholar
Pascual, M., Bentzen, P., Riva-Rossi, C., Mackey, G., Kinnison, M.T. and Walker, R., 2001. First documented case of anadromy in a population of introduced rainbow trout in Patagonia, Argentina. Am. Fish. Soc., 130, 5367.2.0.CO;2>CrossRefGoogle Scholar
Quinn, T.P. and Myers, K.W., 2004. Anadromy and the marine migrations of Pacific salmon and trout: Rounsefell revisited. Rev. Fish Biol. Fisher., 14, 421442.CrossRefGoogle Scholar
Rabe, F.W., 1967. Age and growth of rainbow trout in four Alpine Lakes. Northwest Sci., 41, 1222.Google Scholar
Riva-Rossi, C., Pascual, M.A., Babaluk, J.A., García-Asorey, M. and Halden, N.M., 2007. Intra-population variation in anadromy and reproductive life span in rainbow trout introduced in the Santa Cruz River, Argentina. J. Fish Biol., 70, 118.CrossRefGoogle Scholar
Rosenau, M., 1991. Natal-stream rearing in three populations of rainbow trout in Lake Taupo, New Zealand. N. Z. J. Mar. Fresh., 25, 8191.CrossRefGoogle Scholar
Sakai, M. and Espinos, A., 1994. Repeat homing and migration of rainbow trout to the inlet and outlet spawning streams in a Patagonian lake, Argentina. Fisheries Sci., 60, 137142.CrossRefGoogle Scholar
Satterthwaite, W.H., Beakes, M.P., Collins, E.M., Swank, D.R., Merz, J.E., Titus, R.G., Sogard, S.M. and Mange, M., 2010. State-dependent life history models in a changing (and regulated) environment: steelhead in the California Central Valley. Evol. Appl., 3, 221243.CrossRefGoogle Scholar
Seelbach, P.W., 1993. Population biology of steelhead in a stable-flow, low-gradient tributary of lake Michigan. Am. Fish. Soc., 122, 179198.2.3.CO;2>CrossRefGoogle Scholar
Soto, D., Arismendi, I., Sanzana, J. and Barrera, V., 2001. Evaluación del potencial biológico de la pesca deportiva en la décima región, Informe Técnico FNDR X Región, Chile, 320 p.Google Scholar
Soto, D., Arismendi, I. and Solar, I., 2002. Estudio del ciclo reproductivo de las principales especies objetivo de la pesca deportiva en la X Región, Proyecto FIP 2000–24, Valparaíso, Chile, 98 p.Google Scholar
Soto, D., Arismendi, I., González, J., Sanzana, J., Jara, F., Jara, C., Guzmán, E. and Lara, A., 2006. Southern Chile, trout and salmon country: invasion patterns and threats for native species. Rev. Chil. Hist. Nat., 79, 97117.CrossRefGoogle Scholar
Thomasson, K., 1963. Araucanian Lakes. Plankton studies in north Patagonia with notes on terrestrial vegetation. Acta Phytogeogr. Sue., 47, 1141.Google Scholar
Youngs, W.D. and Oglesby, R.T., 1972. Cayuga Lake: Effects of explotaition and introductions on the salmonid community. J. Fish. Res. Board Can., 29, 787794.CrossRefGoogle Scholar