Skip to main content Accessibility help
Hostname: page-component-55597f9d44-mzfmx Total loading time: 0.539 Render date: 2022-08-19T21:21:42.940Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Aquatic invertebrate assemblages in ponds from coastal Mediterranean wetlands

Published online by Cambridge University Press:  11 July 2014

Maria Anton-Pardo*
University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses and Research Institute of Fish Culture and Hydrobiology, Husova tř. 458/102, 370 05 České Budějovice, Czech Republic
Xavier Armengol
Department of Microbiology and Ecology/ICBiBE, University of Valencia, Dr Moliner 50, 46100 Burjassot, Spain
*Corresponding author: pardo@frov.jcu
Get access


Invertebrate aquatic assemblages in ponds from Mediterranean wetlands are composed of organisms belonging to different taxonomic groups, which present a wide range of sizes (from small rotifers to large crustaceans or insects). Although they are often sampled and analyzed separately, the ecological links among these organisms should be considered, especially in very shallow waters. In our study, invertebrate assemblages (including micro-, macrozooplankton and macroinvertebrates) were characterized in eight shallow lakes from Mediterranean wetlands in Southeastern Spain. A great spatial and temporal variability in the assemblages and in some environmental features was observed. The community was dominated in abundance and species richness by rotifers in most of the water bodies. Fish greatly contributed to the differences in community composition, as fishless ponds presented abundant and diverse cladoceran populations. Nutrient and chlorophyll-a concentration, conductivity and macrophyte cover had also a great influence on these assemblages, especially in micro- and macrozooplankton. The temporal changes observed in some of these variables affect the proportion of invertebrate biomass of the different groups along the study period. All this environmental heterogeneity produces similar responses in the invertebrate groups, in general well adapted to salinity changes or high trophic conditions. Although the heterogeneity and human disturbances can increase regional diversity, they can cause the disappearance of valuable habitats, and finally, the homogeneity in invertebrate assemblages.

Research Article
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Alekseev, V., Fefilova, E. and Dumont, H.J., 2002. Some noteworthy freeliving copepods from surface freshwater in Belgium. Belg. J. Zool., 132, 133139.Google Scholar
Anton-Pardo, M., 2011. Influencia de factores bióticos y abióticos sobre el zooplankton de dos zonas litorales sometidas a importantes efectos antrópicos. Dissertation, University of Valencia, 294 p.
Antón-Pardo, M. and Armengol, X., 2010. Zooplankton community from restored peridunal ponds in the Mediterranean region (L'Albufera Natural Park, Valencia, Spain). Limnetica, 29, 133143.Google Scholar
Anton-Pardo, M. and Armengol, X., 2012. Effects of salinity and water temporality on zooplankton community in coastal Mediterranean ponds. Estuar. Coast. Shelf S., 114, 9399.CrossRefGoogle Scholar
APHA, 1980. Standard Methods for the Examination of Water and Wastewater, American Public Health Association, Washington, DC, 1268 p.
Armengol, X., Antón-Pardo, M., Atiénzar, F., Echevarrías, J.L. and Barba, E., 2008. Limnological variables relevant to the presence of the endangered white-headed duck in Southeastern Spanish wetlands during a dry period. Acta Zool. Acad. Sci. Hung., 54, 4560.Google Scholar
Armengol-Díaz, X., Rodrigo, M.A. and Oltra, R., 2002. Caracterización del zooplancton de la zona sur del Parque Natural del Hondo (Alicante). Ecología, 16, 243257.Google Scholar
Atienzar, F., Antón-Pardo, M., Armengol, X. and Barba, E., 2012. Distribution of the white-headed duck Oxyura leucocephala is affected by environmental factors in a Mediterranean wetland. Zool. Stud., 51, 783792.Google Scholar
Badosa, A., Boix, D., Brucet, S., López-Flores, R. and Quintana, X.D., 2006. Nutrients and zooplankton composition and dynamics in relation to the hydrological pattern in a confined Mediterranean salt marsh (NE Iberian Peninsula). Estuar. Coast. Shelf Sci., 66, 513522.CrossRefGoogle Scholar
Boix, D., Sala, J., Gascón, S., Martinoy, M., Gifre, J., Brucet, S., Badosa, A., López Flores, R. and Quintana, X.D., 2007. Comparative biodiversity of crustaceans and aquatic insects from various water body types in coastal Mediterranean wetlands. Hydrobiologia, 584, 347359.CrossRefGoogle Scholar
Boix, D., Gascón, S., Sala, J., Badosa, A., Brucet, S., López Flores, R., Martinoy, M., Gifre, J. and Quintana, X.D., 2008. Patterns of composition and species richness of crustaceans and aquatic insects along environmental gradients in Mediterranean water bodies. Hydrobiologia, 597, 5369.CrossRefGoogle Scholar
Boronat, L., Miracle, M.R. and Armengol, X., 2001. Cladoceran assemblages in a mineralization gradient. Hydrobiologia, 442, 7588.CrossRefGoogle Scholar
Brooks, J.L. and Dodson, S.I., 1965. Predation, body size, and composition of plankton. Science, 150, 2835.CrossRefGoogle ScholarPubMed
Brucet, S., Boix, D., Nathansen, L.W., Quintana, X.D., Jensen, E., Balayla, D., Meerhoff, M. and Jeppesen, E., 2012. Effects of temperature, salinity and fish in structuring the macroinvertebrate community in shallow lakes: implications for effects on climate change. PLoS ONE, 7, E30877.CrossRefGoogle ScholarPubMed
Burks, R.L., Lodge, D.M., Jeppesen, E. and Lauridsen, T.L., 2002. Diel horizontal migration of zooplankton: costs and benefits of inhabiting the littoral. Freshw. Biol., 47, 343365.CrossRefGoogle Scholar
Canfield, D.E. Jr., Langeland, K.A., Maceina, M.J., Haller, W.T., Shireman, J.V. and. Jones, J.R., 1983. Trophic state classification of lakes with aquatic macrophytes. Can. J. Fish. Aquat. Sci., 40, 17131718.CrossRefGoogle Scholar
Claps, M.C., Gabellone, N.A. and Benítez, H.H., 2011. Seasonal changes in the vertical distribution of rotifers in a eutrophic shallow lake with contrasting states of clear and turbid water. Zool. Stud., 50, 454465.Google Scholar
Compte, J., Gascón, S., Quintana, X.D. and Boix, D., 2012. The effects of small fish presence on a species-poor community dominated by omnivores: example of a size-based trophic cascade. J. Exp. Mar, Biol. Ecol., 418–419, 111.CrossRefGoogle Scholar
Doi, H., Chang, K-H., Nishibe, Y., Imai, H. and Nakano, S-i., 2013. Lack of congruence in species diversity indices and community structures of planktonic groups based on local environmental factors. PLoS ONE, 8, e69594.CrossRefGoogle ScholarPubMed
Dumont, H., Van de Velde, I. and Dumont, S., 1975. The dry weight estimate of biomass in a selection of cladocera, copepoda and rotifera from the plankton, periphyton and benthos of continental waters. Oecologia, 19, 7597.CrossRefGoogle Scholar
Fahd, K., Florencio, M., Keller, C. and Serrano, L., 2007. The effect of sampling scale on zooplankton community assessment and its implications for the conservation of temporary ponds in south-west Spain. Aquat. Conserv., 17, 175193.CrossRefGoogle Scholar
Figuerola, J. and Green, A.J., 2002. Dispersal of aquatic organisms by waterbirds: a review of past research and priorities for future studies. Freshw. Biol., 47, 483494.CrossRefGoogle Scholar
Florencio, M., Diaz-Paniagua, C., Gomez-Mestre, I. and Serrano, L., 2012. Sampling macroinvertebrates in a temporary pond: comparing the suitability of two technics to detect richness, spatial segregation and diel activity. Hydrobiologia, 689, 121130.CrossRefGoogle Scholar
Frisch, D., Moreno-Ostos, E. and Green, A.J., 2006. Species richness and distribution of copepods and cladocerans and their relation to hydroperiod and other environmental variables in Doñana, south-west Spain. Hydrobiologia, 556, 327340.CrossRefGoogle Scholar
García-Criado, F. and Trigal, C., 2005. Comparison of several techniques for sampling macroinvertebrates in different habitats of a North Iberian pond. Hydrobiologia, 545, 103115.CrossRefGoogle Scholar
Gilbert, J.J., 1985. Competition between rotifers and Daphnia. Ecology, 66, 19431950.CrossRefGoogle Scholar
Golterman, H.L., Clymo, R.S. and Ohnstad, M., 1978. Methods for Physical and Chemical Analysis of Freshwaters. IBP Handbook no 8, Blackwell Scientific Publications, Oxford, 213 p.Google Scholar
Gonçalves, A.M.M., Castro, B.B., Pardal, M.A. and Gonçalves, F., 2007. Salinity effects on survival and life history of two freshwater cladocerans (Daphnia magna and Daphnia longispina). Ann. Limnol. - Int. J. Lim., 43, 1320.CrossRefGoogle Scholar
Green, A.J., Fuentes, C., Moreno-Ostos, E. and Rodrigues da Silva, S.L., 2005. Factors influencing cladoceran abundance and species richness in brackish lakes in Eastern Spain. Ann. Limnol. - Int. J. Lim., 41, 7381.CrossRefGoogle Scholar
Grillas, P., Gauthier, P., Yavercovski, N. and Perennou, C., 2004. Mediterranean Temporary Ponds. Volume 1- Issues Relating to Conservation, Functioning and Management, Tour du Valat, France, 122 p.Google Scholar
Hall, D.J., Threlkeld, S.T., Burns, C.W. and Crowley, P.H., 1976. The size-efficiency hypothesis and the size structure of zooplankton communities. Annu. Rev. Ecol. Syst., 7, 177208.CrossRefGoogle Scholar
Herzig, A., 1994. Predator-prey relationships within the pelagic community of Neusiedler See. Hydrobiologia, 275/276, 8196.CrossRefGoogle Scholar
Jeffrey, E. and Humphrey, G.F., 1975. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanzen, 167, 91194.CrossRefGoogle Scholar
Jeppesen, E., Søndergaard, M., Kanstrup, E., Petersen, B., Eriksen, R.B., Hammershøj, M., Mortensen, E., Jensen, J.P. and Have, A., 1994. Does the impact of nutrients on the biological structure and function of brackish and freshwater lakes differ? Hydrobiologia, 275/276, 1530.CrossRefGoogle Scholar
Jiménez, J., Lacomba, I., Sancho, V. and Risueño, P., 2002. Peces continentales, anfibios y reptiles de la Comunidad Valenciana, Generalitat Valenciana, Valencia, 271 p.Google Scholar
Johnston, T.A., 1995. Food limitation during early life history of walleye (Stizostedion vitreum). Dissertation, University of Manitoba, 256 p.
Kattel, G.R., 2012. Can we improve management practice of floodplain lakes using cladoceran zooplankton? River Res. Appl., 28, 11131120.CrossRefGoogle Scholar
Koste, W., 1978. Rotatoria. Die rädertiere Mitteleuropas. Monogonta, Gerbrüder Bortraeger, Berlin, 671 p.Google Scholar
Lepš, J. and Šmilauer, P., 2003. Multivariate Analysis of Ecological Data using CANOCO, Cambridge University Press, Cambridge, UK, 269 p.CrossRefGoogle Scholar
López, M.P. and Tomàs, X., 1989. Chemical composition of the small coastal lagoons of the Mediterranean Spanish litoral. Sci. Mar., 53, 591599.Google Scholar
Malley, D.F., Lawrence, S.G., MacIver, M.A. and Findlay, W.J., 1989. Range of variations in estimates of dry weight for planktonic Crustacea and Rotifera from temperate North American lakes. Canadian Technical Report of Fisheries and Aquatic Sciences 1666, 49 p.
Martinoy, M., Boix, D., Sala, J., Gascón, S., Gifre, J., Algerich, A., Barrera, R., Brucet, S., Badosa, A., López-Flores, R., Méndez, M., Utgé, J.M. and Quintana, X.D., 2006. Crustacean and aquatic insect assemblages in the Mediterranean coastal ecosystems of Empordà wetlands (NE Iberian peninsula). Limnetica, 25, 665682.Google Scholar
Meerhoff, M., Iglesias, C., De Mello, F.T., Clemente, J.M., Jensen, E., Lauridsen, T.L. and Jeppesen, E., 2007. Effects of habitat complexity on community structure and predator avoidance behaviour of littoral zooplankton in temperate versus subtropical shallow lakes. Freshw. Biol., 52, 10091021.CrossRefGoogle Scholar
Mittelbach, G.G., Turner, A.M., Hall, D.J., Rettig, J.E. and Osenberg, C.W., 1995. Perturbation and resilience: a long-term whole-lake study of predator extinction and reintroduction. Ecology, 76, 23472360.CrossRefGoogle Scholar
Murphey, J. and Riley, J.A., 1962. A modified single-solution method for the determination of phosphate in natural waters. Anal. Chim. Acta, 27, 3136.CrossRefGoogle Scholar
Muylaert, K., Declerck, S., Van Wichelen, J., De Meester, L. and Vyverman, W., 2006. An evaluation of the role of daphnids in controlling phytoplankton biomass in clear water versus turbid shallow lakes. Limnologica, 36, 6978.CrossRefGoogle Scholar
Nielsen, D.L., Hillman, T.J., Smith, F.J. and Shiel, R.J., 2002. The influence of seasonality and duration of flooding on zooplankton in experimental billabongs. River Res. Appl., 18, 227237.CrossRefGoogle Scholar
Oltra, R. and Armengol-Díaz, X., 1999. Limnología de los humedales mediterráneos susceptibles de albergar samaruc y fartet: (II) zooplancton. In: Planelles, M. (ed.) Peces Ciprinodóntidos ibéricos. Fartet y Samaruc, Generalitat Valenciana, Valencia, 357 p.Google Scholar
Ortells, R., Reusch, T.B.H. and Lampert, W., 2005. Salinity tolerance in Daphnia magna: characteristics of genotypes hatching from mixed sediments. Oecologia, 143, 509516.CrossRefGoogle ScholarPubMed
Pearce, F. and Crivelli, A.J., 1994. Characteristics of Mediterranean Wetlands, Tour du Valat, France, 90 p.Google Scholar
Persson, M., Andersson, S., Baden, S. and Moksnes, P.O., 2008. Trophic role of the omnivorous grass shrimp Palemon elegans in a Swedish eelgrass system. Mar. Ecol.-Prog. Ser., 371, 203212.CrossRefGoogle Scholar
Piscart, C., Moreteau, J.C. and Beisel, J.N., 2005. Biodiversity and structure of macroinvertebrate communities along a small permanent salinity gradient (Meurthe River, France). Hydrobiologia, 551, 227236.CrossRefGoogle Scholar
Quintana, X.D., 1995. Relaciones entre el peso y la longitud en Aedes, Culex y Gammarus. Limnetica, 11, 1517.Google Scholar
Quintana, X.D., 2002. Measuring the intensity of disturbance in zooplankton communities of Mediterranean salt marshes using multivariate analysis. J. Plankton Res., 24, 255265.CrossRefGoogle Scholar
Quintana, X.D., Boix, D., Badosa, A., Brucet, S., Compte, J., Gascón, S., López-Flores, R., Sala, J. and Moreno-Amich, R., 2006. Community structure in Mediterranean shallow lentic ecosystems: size-based vs. taxon-based approaches. Limnetica, 25, 303320.Google Scholar
Rennie, M.D. and Jackson, L.J., 2005. The influence of habitat complexity on littoral invertebrate distributions: patterns differ in shallow prairie lakes with and without fish. Can. J. Fish Aquat. Sci., 62, 20882099.CrossRefGoogle Scholar
Rodrigo, M.A., Armengol-Díaz, X., Oltra, R., Dasí, M.J. and Colom, W., 2001. Environmental variables and planktonic communities in two ponds of El Hondo wetland (SE Spain). Int. Rev. Hydrobiol., 86, 299315.3.0.CO;2-W>CrossRefGoogle Scholar
Rodrigo, M.A., Rojo, C. and Armengol, X., 2003. Plankton biodiversity in a landscape of shallow water bodies (Mediterranean coast, Spain). Hydrobiologia, 506–509, 317326.CrossRefGoogle Scholar
Romare, P., Berg, S., Lauridsen, T. and Jeppesen, E., 2003. Spatial and temporal distribution of fish and zooplankton in a shallow lake. Freshw. Biol., 48, 13531362.CrossRefGoogle Scholar
Ruttner-Kolisko, A., 1977. Suggestion for biomass calculations of plankton rotifers. Arch. Hydrobiol. Beih. Ergebn. Limnol., 8, 7176.Google Scholar
Sahuquillo, M. and Miracle, M.R., 2010. Crustacean and rotifer seasonality in a Mediterranean temporary pond with high diversity (Lavajo de Abajo de Sinarcas, Eastern Spain). Limnetica, 29, 7592.Google Scholar
Sahuquillo, M., Poquet, J.M., Rueda, J. and Miracle, M.R., 2007. Macroinvertebrate communities in sediment and plants in coastal Mediterranean water bodies (Central Iberian Peninsula). Ann. Limnol.-Int. J. Lim., 43, 117130.CrossRefGoogle Scholar
Scheffer, M., 2004. Ecology of Shallow Lakes, Kluwer Academic Publishers, The Netherlands. 357 p.CrossRefGoogle Scholar
Smock, L.A., 1980. Relationships between body size and biomass of aquatic insects. Freshw. Biol., 10, 375383.CrossRefGoogle Scholar
Tachet, H., Richoux, P., Bournaud, M. and Usseglio-Polatera, P., 2003. Invertébrés d'eau douce; systématique, biologie, écologie. CNRS Éditions, Lyon, 585 p.Google Scholar
Vadeboncoeur, Y., Lodge, D.M. and Carpenter, S.R., 2001. Whole-lake fertilization effects on distribution of primary production between benthic and pelagic habitats. Ecology, 82, 10651077.CrossRefGoogle Scholar
Viñals, M.J., Colom, W., Rodrigo, T., Dasí, M.J., Armengol, J., Oltra, R. and Miracle, R., 2001. Rasgos característicos de un humedal mediterráneo artificializado y su problemática ambiental: El Hondo de Elche (Alicante, España). Humedales Mediterráneos, 1, 147154.Google Scholar
Waterkeyn, A., Vanschoenwinkel, B., Grillas, P. and Brendonck, L., 2010. Effect of salinity on seasonal communiy patterns of Mediterranean temporary wetland crustaceans: A mesocosm study. Limnol. Oceanogr., 55, 17121722.CrossRefGoogle Scholar
Wilhelm, F.M., Schindler, D.W. and McNaught, A.S., 2000. The influence of experimental scale on estimating the predation rate of Gammarus lacustris (Crustacea: Amphipoda) on Daphnia in an alpine lake. J. Plankton Res., 22, 17191734.CrossRefGoogle Scholar
Williams, A.E. and Moss, B., 2003. Effects of different fish species and biomass on plankton interactions in a shallow lake. Hydrobiologia, 491, 331346.CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Aquatic invertebrate assemblages in ponds from coastal Mediterranean wetlands
Available formats

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Aquatic invertebrate assemblages in ponds from coastal Mediterranean wetlands
Available formats

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Aquatic invertebrate assemblages in ponds from coastal Mediterranean wetlands
Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *