Skip to main content Accessibility help
×
Home
Hostname: page-component-55b6f6c457-rfl4x Total loading time: 0.203 Render date: 2021-09-28T02:55:34.568Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Article contents

Influence of α-tocopherol supplementation on trans-18:1 and conjugated linoleic acid profiles in beef from steers fed a barley-based diet

Published online by Cambridge University Press:  03 April 2012

C. Mapiye
Affiliation:
Lacombe Research Centre, Agriculture and Agri-Food Canada, 6000 C&E Trail, Lacombe, Alberta T4L 1W1, Canada
M. E. R. Dugan*
Affiliation:
Lacombe Research Centre, Agriculture and Agri-Food Canada, 6000 C&E Trail, Lacombe, Alberta T4L 1W1, Canada
M. Juárez
Affiliation:
Lacombe Research Centre, Agriculture and Agri-Food Canada, 6000 C&E Trail, Lacombe, Alberta T4L 1W1, Canada
J. A. Basarab
Affiliation:
Alberta Agriculture and Rural Development, Lacombe Research Centre, 6000 C & E Trail, Lacombe, Alberta T4L 1W1, Canada
V. S. Baron
Affiliation:
Lacombe Research Centre, Agriculture and Agri-Food Canada, 6000 C&E Trail, Lacombe, Alberta T4L 1W1, Canada
T. Turner
Affiliation:
Lacombe Research Centre, Agriculture and Agri-Food Canada, 6000 C&E Trail, Lacombe, Alberta T4L 1W1, Canada
X. Yang
Affiliation:
Lacombe Research Centre, Agriculture and Agri-Food Canada, 6000 C&E Trail, Lacombe, Alberta T4L 1W1, Canada
N. Aldai
Affiliation:
Food Science and Technology, Faculty of Pharmacy, University of Basque Country, 01006 Vitoria-Gasteiz, Spain
J. L. Aalhus
Affiliation:
Lacombe Research Centre, Agriculture and Agri-Food Canada, 6000 C&E Trail, Lacombe, Alberta T4L 1W1, Canada
*
E-mail: duganm@agr.gc.ca
Get access

Abstract

The current study was conducted to determine the effect of different α-tocopherol (vitamin E) inclusion levels on trans(t)-18:1 and conjugated linoleic acid (CLA) profiles in subcutaneous and intramuscular fat of steers fed a barley-based diet. Fifty-six feedlot steers were offered a barley-based finisher diet (73% steam rolled barley, 22% barley silage and 5% supplement as-fed basis) with four levels of supplementary dl-α-tocopheryl acetate (340, 690, 1040 or 1740 IU/steer per day) for 120 days. Adding vitamin E to the diet had little effect on the overall fatty acid composition of intramuscular fat. The proportion of individual and total t,t- and cis(c),t-CLA, n-3 fatty acids, total polyunsaturated fatty acids (PUFA), mono-unsaturated fatty acids and saturated fatty acids to PUFA ratio in subcutaneous fat were not influenced (P > 0.05) by dietary vitamin E supplementation. Increasing levels of vitamin E led to linear reductions in t6-/t7-/t8-18:1 and t10-18:1 (P < 0.05), and linear increase in t11-/t10-18:1 ratio (P < 0.05) in subcutaneous fat. The content of 20:3n-6 and total n-6 in subcutaneous fat decreased (P < 0.05) linearly with increasing amounts of vitamin E. The subcutaneous fat n-6:n-3 ratio showed a quadratic (P < 0.05) response to vitamin E. In conclusion, although vitamin E supplementation has some potential to reduce t10-18:1 formation and increase t11-/t10-18:1 ratio in subcutaneous fat of cattle fed barley-based diets, the changes in the present study were limited and may not have been sufficient to impact on human health.

Type
Product quality, human health and well-being
Information
animal , Volume 6 , Issue 11 , November 2012 , pp. 1888 - 1896
Copyright
Copyright © The Animal Consortium 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aldai, N, Dugan, MER, Rolland, DC, Kramer, JKG 2009. Survey of the fatty acid composition of Canadian beef: backfat and longissimus lumborum muscle. Canadian Journal of Animal Science 89, 315329.CrossRefGoogle Scholar
Aldai, N, Dugan, MER, Kramer, JKG, Robertson, WM, Juárez, M, Aalhus, JL 2010. Trans-18:1 and conjugated linoleic acid profiles after the inclusion of buffer, sodium sesquicarbonate, in the concentrate of finishing steers. Meat Science 84, 735741.CrossRefGoogle ScholarPubMed
Alfaia, CPM, Alves, SP, Martins, SIV, Costa, ASH, Fontes, CMGA, Lemos, JPC, Bessa, RJB, Prates, JAM 2009. Effect of the feeding system on intramuscular fatty acids and conjugated linoleic acid isomers of beef cattle, with emphasis on their nutritional value and discriminatory ability. Food Chemistry 114, 939946.CrossRefGoogle Scholar
Association of Official Analytical Chemists (AOAC) 2003. Official methods of analysis, 14th edition. AOAC, Washington, DC, USA.Google Scholar
Bagheripour, E, Rouzbehan, Y, Alipour, D 2008. Effects of ensiling, air-drying and addition of polyethylene glycol on in vitro gas production of pistachio by-products. Animal Feed Science and Technology 146, 327336.CrossRefGoogle Scholar
Bauchart, D, Roy, A, Lorenz, S, Chardigny, JM, Ferlay, A, Gruffat, D, Sébédio, JL, Chilliard, Y, Durand, D 2007. Butters varying in trans 18:1 and cis-9, trans-11 conjugated linoleic acid modify plasma lipoproteins in the hypercholesterolemic rabbit. Lipids 42, 123133.CrossRefGoogle ScholarPubMed
Benjamin, S, Spener, F 2009. Conjugated linoleic acids as functional food: an insight into their health benefits. Nutrition and Metabolism 6, 36.CrossRefGoogle ScholarPubMed
Brethour, JR 1992. The repeatability and accuracy of ultrasound in measuring backfat of cattle. Journal of Animal Science 70, 10391044.CrossRefGoogle ScholarPubMed
Brogna, DMR, Nasri, S, Salem, HB, Mele, M, Serra, A, Bella, M, Priolo, A, Makkar, HPS, Vasta, V 2011. Effect of dietary saponins from Quillaja saponaria L. on fatty acid composition and cholesterol content in muscle Longissimus dorsi of lambs. Animal 5, 11241130.CrossRefGoogle ScholarPubMed
Canadian Council on Animal Care 1993. Guide to the care and use of experimental animals, vol. 1, 2nd edition. Canadian Council on Animal Care, Ottawa, Ontario, Canada.Google Scholar
Chardigny, J-M, Destaillats, F, Malpuech-Brugere, C, Moulin, J, Bauman, DE, Lock, AL, Barbano, DM, Mensink, RP, Bezelgues, J-B, Chaumont, P, Combe, N, Cristiani, I, Joffre, F, German, JB, Dionisi, F, Boirie, Y, Sebedio, J-L 2008. Do trans fatty acids from industrially produced sources and from natural sources have the same effect on cardiovascular disease risk factors in healthy subjects? Results of the trans Fatty Acids Collaboration (TRANSFACT) study. American Journal of Clinical Nutrition 87, 558566.CrossRefGoogle ScholarPubMed
Chen, XJ, Mao, HL, Lin, J, Liu, JX 2008. Effects of supplemental soybean oil and vitamin E on carcass quality and fatty acid profiles of meat in Huzhou lamb. Acta Agriculturae Scandinavica Section A – Animal Sciences 58, 129135.CrossRefGoogle Scholar
Chen, XJ, Mao, HL, Ma, XN, Liu, JX 2010. Effects of dietary corn oil and vitamin E supplementation on fatty acid profiles and expression of acetyl CoA carboxylase and stearoyl-CoA desaturase gene in Hu sheep. Animal Science Journal 81, 165171.CrossRefGoogle ScholarPubMed
Cruz-Hernandez, C, Deng, Z, Zhou, J, Hill, AR, Yurawecz, MP, Delmonte, P, Mossoba, MM, Dugan, MER, Kramer, JKG 2004. Methods to analyze conjugated linoleic acids (CLA) and trans-18:1 isomers in dairy fats using a combination of GC, silver ion TLC-GC, and silver ion HPLC. Journal of AOAC International 87, 545560.Google Scholar
Daley, CA, Abbot, A, Doyle, PS, Nader, GA, Larson, S 2010. A review of fatty acid profiles and antioxidant content in grass-fed and grain-fed beef. Nutrition Journal 9, 112.CrossRefGoogle ScholarPubMed
Dugan, MER, Rolland, DC, Aalhus, JL, Aldai, N, Kramer, JKG 2008. Subcutaneous fat composition of youthful and mature Canadian beef: emphasis on individual conjugated linoleic acid and trans-18:1 isomers. Canadian Journal of Animal Science 88, 591599.CrossRefGoogle Scholar
Dugan, MER, Kramer, JKG, Robertson, WM, Meadus, WJ, Aldai, N, Rolland, DC 2007. Comparing subcutaneous fat in beef and muskox with emphasis on trans-18:1 and conjugated linoleic acids. Lipids 42, 509518.CrossRefGoogle ScholarPubMed
Dugan, MER, Aldai, N, Kramer, JKG, Gibb, DJ, Juárez, M, McAllister, TA 2010. Feeding wheat dried distillers grains with solubles improves beef trans and conjugated linoleic acid profiles. Journal of Animal Science 88, 18421847.CrossRefGoogle ScholarPubMed
Field, CJ, Blewett, HH, Proctor, S, Vine, D 2009. Human health benefits of vaccenic acid. Applied Physiology Nutrition and Metabolism 34, 979991.CrossRefGoogle ScholarPubMed
Folch, J, Lees, M, Stanley, GHS 1957. A simple method for the isolation and purification of total lipids from animal tissue. The Journal of Biological Chemistry 226, 497509.Google Scholar
Fritsche, S, Rumsey, TS, Yurawecz, MP, Ku, Y, Fritsche, J 2001. Influence of growth promoting implants on fatty acid composition including conjugated linoleic acid isomers in beef fat. European Food Research and Technology 212, 621629.CrossRefGoogle Scholar
Gabryszuk, M, Czauderna, M, Baranowski, A, Strzałkowska, N, Jóźwik, A, Krzyżewski, J 2007. The effect of diet supplementation with Se, Zn and vitamin E on cholesterol, CLA and fatty acid contents of meat and liver of lambs. Animal Science Papers and Reports 25, 2533.Google Scholar
Griinari, JM, Corl, BA, Lacy, SH, Chouinard, PY, Nurmela, KVV, Bauman, DE 2000. Conjugated linoleic acid is synthesized endogenously in lactating dairy cows by Δ9-desaturase. Journal of Nutrition 130, 22852291.CrossRefGoogle Scholar
Härtig, C, Loffhagen, N, Harms, H 2005. Formation of trans fatty acids is not involved in growth-linked membrane adaptation of Pseudomonas putida. Applied Environmental Microbiology 71, 19151922.CrossRefGoogle Scholar
He, ML, Chung, Y-H, McAllister, TA, Beauchemin, KA, Mir, PS, Aalhus, JL, Dugan, MER 2011. Inclusion of flaxseed in hay- and barley silage diets increases alpha-linolenic acid in cow plasma independent of forage type. Lipids 46, 577585.CrossRefGoogle ScholarPubMed
Health Canada 2006. Food and nutrition. Transforming the food supply. Report of the trans fat task force submitted to the minister of health. Retrieved August 10, 2011, from http://www.hcsc.gc.ca/fn-an/alt_formats/hpfb-dgpsa/pdf/nutrition/tf-gt_reprap-eng.pdfGoogle Scholar
Hristov, AN, Kennington, LR, McGuire, MA, Hunt, CW 2005. Effect of diets containing linoleic acid- or oleic acid-rich oils on ruminal fermentation and nutrient digestibility, and performance and fatty acid composition of fat and muscle tissues of finishing cattle. Journal of Animal Science 83, 13121321.CrossRefGoogle ScholarPubMed
Hughes, PE, Tove, SB 1980a. Identification of an endogenous electron donor for biohydrogenation as α-tocopherolquinol. Journal of Biology and Chemistry 255, 44474452.Google ScholarPubMed
Hughes, PE, Tove, SB 1980b. Identification of deoxy-α-tocopherolquinol as another endogenous electron donor for biohydrogenation. Journal of Biology and Chemistry 255, 1180211806.Google ScholarPubMed
Juárez, M, Dugan, MER, Aalhus, JL, Aldai, N, Basarab, JA, Baron, VS, McAllister, TA 2011. Effects of vitamin E and flaxseed on rumen-derived fatty acid intermediates in beef intramuscular fat. Meat Science 88, 434440.CrossRefGoogle ScholarPubMed
Juárez, M, Dugan, MER, Aldai, N, Aalhus, JL, Basarab, JA, Baron, VS, McAllister, TA 2010. Dietary vitamin E inhibits the trans 10–18:1 shift in beef backfat. Canadian Journal of Animal Science 90, 912.CrossRefGoogle Scholar
Kay, JK, Roche, JR, Kolver, ES, Thomson, NA, Baumgard, LH 2005. A comparison between feeding systems (pasture and TMR) and the effect of vitamin E supplementation on plasma and milk fatty acid profiles in dairy cows. Journal of Dairy Research 72, 322332.CrossRefGoogle ScholarPubMed
Kong, YH, He, ML, McAlister, TA, Seviour, R, Forster, R 2010. Quantitative fluorescence in situ hybridization of microbial communities in the rumen of cattle fed different diets. Applied Environmental Microbiology 76, 69336938.CrossRefGoogle ScholarPubMed
Kraft, J, Kramer, JKG, Schoene, F, Chambers, JR, Jahreis, G 2008. Extensive analysis of long-chain polyunsaturated fatty acids, CLA, trans-18:1 isomers, and plasmalogenic lipids in different retail beef types. Journal of Agricultural and Food Chemistry 56, 47754782.CrossRefGoogle ScholarPubMed
Kramer, JKG, Hernandez, M, Cruz-Hernandez, C, Kraft, J, Dugan, MER 2008. Combining results of two GC separations partly achieves determination of all cis and trans 16:1, 18:1, 18:2, 18:3 and CLA isomers of milk fat as demonstrated using Ag-ion SPE fractionation. Lipids 43, 259273.CrossRefGoogle ScholarPubMed
Lee, S, Panjono, K, Kang, SM, Kim, TS, Park, YS 2008. The effects of dietary sulphur and vitamin E supplementation on the quality of beef from the longissimus muscle of Hanwoo bulls. Asian–Australian Journal of Animal Science 21, 10591066.CrossRefGoogle Scholar
Leheska, JM, Thompson, LD, Howe, JC, Hentges, E, Boyce, J, Brooks, JC, Shriver, B, Hoover, L, Miller, MF 2008. Effects of conventional and grass feeding systems on the nutrient composition of beef. Journal of Animal Science 88, 35753585.CrossRefGoogle Scholar
Liao, G, Xu, X, Zhou, G 2009. Effects of cooked temperatures and addition of antioxidants on formation of heterocyclic aromatic amines in pork floss. Journal of Food Processing and Preservation 33, 159175.CrossRefGoogle Scholar
Martin, SA, Jenkins, TC 2002. Factors affecting conjugated linoleic acid and trans-C18:1 fatty acid production by mixed ruminal bacteria. Journal of Animal Science 80, 33473352.CrossRefGoogle ScholarPubMed
Morrissey, PA, Quinn, PB, Sheehy, PJA 1994. Newer aspects of micronutrients in chronic disease: vitamin E. Proceedings of the Nutrition Society 53, 571582.CrossRefGoogle ScholarPubMed
Nassu, RT, Dugan, MER, Juárez, M, Basarab, JA, Baron, VS, Aalhus, JL 2011a. Effect of α-tocopherol tissue levels on beef quality. Animal 5, 20102018.CrossRefGoogle ScholarPubMed
Nassu, RT, Dugan, MER, He, ML, McAllister, TA, Aalhus, JL, Aldai, N, Kramer, JKG 2011b. The effects of feeding flaxseed to beef cows given forage based diets on fatty acids of longissimus thoracis muscle and backfat. Meat Science 89, 469477.CrossRefGoogle ScholarPubMed
NRC – National Research Council 1996. Nutrient requirements of beef cattle, 7th edition. National Academy Press, Washington, DC.Google Scholar
Nuernberg, K, Nuernberg, G, Ender, K, Dannenberger, D, Schabbel, W, Grumbach, S, Zupp, W, Steinhart, H 2005. Effect of grass vs. concentrate feeding on the fatty acid profile of different fat depots in lambs. European Journal of Lipid Science and Technology 107, 737745.CrossRefGoogle Scholar
Oh, K, Hu, FB, Manson, JE, Stampfer, MJ, Willett, WC 2005. Dietary fat intake and risk of coronary heart disease in women: 20 years of follow-up of the nurses’ health study. American Journal of Epidemiology 161, 672679.CrossRefGoogle ScholarPubMed
Özkan, Y, Yilmaz, Ö, Öztürk, A, Ersan, Y 2005. Effects of triple antioxidant combination (vitamin E, vitamin C and α-lipoic acid) with insulin on lipid and cholesterol levels and fatty acid composition of brain tissue in experimental diabetic and non-diabetic rats. Cell Biology International 29, 754760.CrossRefGoogle ScholarPubMed
Pottier, J, Focant, M, Debier, C, De Buysser, G, Goffe, C, Mignolet, E, Froidmont, E, Larondelle, Y 2006. Effect of dietary vitamin E on rumen biohydrogenation pathways and milk fat depression in dairy cows fed high-fat diets. Journal of Dairy Science 89, 685692.CrossRefGoogle ScholarPubMed
Roy, A, Chardigny, JM, Bauchart, D, Ferlay, D, Lorenz, S, Durand, D, Gruffat, D, Faulconnier, Y, Sébédio, JL, Chilliard, Y 2007. Butters rich either in trans-10-C18:1 or in trans-11-C18:1 plus cis-9, trans-11 CLA differentially affect plasma lipids and aortic fatty streak in experimental atherosclerosis in rabbits. Animal 1, 467476.CrossRefGoogle ScholarPubMed
Sofi, F, Buccioni, A, Cesari, F, Gori, AM, Minieri, S, Mannini, L, Casini, A, Gensini, GF, Abbate, R, Antongiovanni, M 2010. Effects of a dairy product (pecorino cheese) naturally rich in cis-9, trans-11 conjugated linoleic acid on lipid, inflammatory and haemorheological variables: a dietary intervention study. Nutrition, Metabolism and Cardiovascular Diseases 20, 117124.CrossRefGoogle Scholar
Statistical Analysis Systems Institute (SAS) 2009. SAS user's guide: statistics, SAS for windows, release 9.2. SAS Institute Inc., Cary, NC.Google Scholar
Sukhija, PS, Palmquist, DL 1988. Rapid method for determination of total fatty acid content and composition of feedstuffs and feces. Journal of Agricultural and Food Chemistry 36, 12021206.CrossRefGoogle Scholar
Tricon, S, Burdge, GC, Jones, EL, Russell, JJ, El-Khazen, S, Moretti, E, Hall, WL, Gerry, AB, Leake, DS, Grimble, RF, Williams, CM, Calder, PC, Yaqoob, P 2006. Effects of dairy products naturally enriched with cis-9,trans-11 conjugated linoleic acid on the blood lipid profile in healthy middle-aged men. American Journal of Clinical Nutrition 83, 744753.CrossRefGoogle ScholarPubMed
Van Soest, PJ, Robertson, JB, Lewis, BA 1991. Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74, 35833597.CrossRefGoogle Scholar
Vasta, V, Makkar, HPS, Mele, M, Priolo, A 2009. Ruminal bio-hydrogenation as affected by tannins in vitro. British Journal of Nutrition 102, 8292.CrossRefGoogle Scholar
Wang, Y, Jacome-Sosa, MM, Proctor, SD 2012. The role of ruminant trans fat as a potential nutraceutical in the prevention of cardiovascular disease. Food Research International 46, 460468.CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Influence of α-tocopherol supplementation on trans-18:1 and conjugated linoleic acid profiles in beef from steers fed a barley-based diet
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Influence of α-tocopherol supplementation on trans-18:1 and conjugated linoleic acid profiles in beef from steers fed a barley-based diet
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Influence of α-tocopherol supplementation on trans-18:1 and conjugated linoleic acid profiles in beef from steers fed a barley-based diet
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *