Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-25T13:03:09.943Z Has data issue: false hasContentIssue false

Immunohistochemical quantification of fast-myosin in frozen histological sections of goat limb muscles

Published online by Cambridge University Press:  02 September 2010

N. Manabe
Affiliation:
Department of Animal Science, Kyoto University, Kyoto 601-01, Japan
Y Azuma
Affiliation:
Interdisciplinary Research Institute of Environmental Sciences, Kyoto 602, Japan
Y. Furuya
Affiliation:
Department of Animal Science, Kyoto University, Kyoto 601-01, Japan
K. Kuramitsu
Affiliation:
Department of Animal Science, Kyoto University, Kyoto 601-01, Japan
Y. Kuribayashi
Affiliation:
Department of Animal Science, Kyoto University, Kyoto 601-01, Japan
N. Nagano
Affiliation:
Pharmaceutical Research Laboratory, Kirin Brewery Co., Ltd, Takasaki 370-12, Japan
H. Miyamoto
Affiliation:
Department of Animal Science, Kyoto University, Kyoto 601-01, Japan
Get access

Abstract

Fast-myosin in frozen histological sections of eight, 10, 11 and nine muscles of the upper forelimb, lower forelimb, upper hindlimb and lower hindlimb, respectively, of goats was quantified by an immunohistochemical micromethod based on the enzyme-linked immunosorbent assay. The structure of the muscles is well preserved during the immunohistochemical measurement. High fast-myosin levels (more than 201 mg/g total protein) were observed in the triceps brachii (lateral head), rectus femoris, vastus lateralis, semitendinosus, semimembranosus, gastrocnemius (lateral head) and long digital extensor muscles. In contrast, low fast-myosin levels (less than 50 mg/g) were found in the triceps brachii (medial head), superficial digital flexor, vastus intermedialis, and soleus muscles. Fast-myosin-positive fibres (type II or fast-twitch type) were distributed more in the superficial regions than in the deeper regions in the triceps brachii (lateral and long heads), biceps brachii, brachialis, biceps femoris, vastus lateralis, vastus medialis, semimembranosus and gastrocnemius (lateral and medial heads) muscles. In contrast, type IIfibres were distributed more in the deeper regions than in the superficial regions in the extensor carpi radialis, deep digital flexor, cranial tibial, deep digital flexor and superficial digital flexor muscles. When the results obtained by the immunohistochemical micromethod were compared with those obtained by biochemical techniques and by histomorphometrical analyses, high correlations were noted. This technique could be used in research projects to study the muscle characteristics that determine meat quality.

Type
Research Article
Copyright
Copyright © British Society of Animal Science 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ariano, M. A., Armstrong, R. B. and Edgerton, V. R. 1973. Hindlimb muscle fiber populations of five mammals. journal of Histochemistry and Cytochemistry 21: 5155.CrossRefGoogle ScholarPubMed
Armstrong, R. B. and Phelps, R. O. 1984. Muscle fiber type composition of the rat hindlimb. American journal of Anatomy 171: 256272.CrossRefGoogle ScholarPubMed
Armstrong, R. B., Saubert, C. W., Seeherman, H. J. and Taylor, C. R. 1982. Distribution of fiber types in locomotory muscles of dogs. American journal of Anatomy 163: 8798.CrossRefGoogle ScholarPubMed
Azuma, Y., Manabe, N., Kawai, F., Kanamori, M. and Miyamoto, H. 1994a. Phosphorus-31 nuclear magnetic resonance study of energy metabolism in intact slow- and fast-twitch muscles of rats. journal of Animal Science 72: 103108.CrossRefGoogle ScholarPubMed
Azuma, Y., Manabe, N., Kawai, F., Kanamori, M. and Miyamoto, H. 1994b. Phosphorus-31 nuclear magnetic resonance study of postmortem changes in the intact tissue of goat muscles. Animal Science and Technology 65: 416422.Google Scholar
Bàràny, M., Bàràny, K., Reckard, T. and Volpe, A. 1965. Myosin of fast and slow muscles of the rabbit. Archives of Biochemistry and Biophysics 109: 185191.CrossRefGoogle ScholarPubMed
Cassens, R. G., Marple, D. N. and Eikelenboom, G. 1975. Animal physiology and meat quality. Advanced Food Research 21: 71155.CrossRefGoogle ScholarPubMed
d'Albis, A., Panaloni, C. and Bechet, J.-J. 1979a. An electrophoretic study of native myosin isozymes and their subunit content. European journal Biochemistry 99: 261272.CrossRefGoogle ScholarPubMed
d'Albis, A., Janmot, C. and Bechet, J.-J. 1979b. Comparison of myosins from the masseter muscle of adult rat, mouse and guinea-pig. European journal of Biochemistry 156: 291296.CrossRefGoogle Scholar
d'Albis, A., Couteaux, R., Janmot, C. and Roulet, A. 1989. Specific programs of myosin expression in the postnatal development of rat muscles. European journal of Biochemistry 183: 583590.CrossRefGoogle ScholarPubMed
Essèn-Gustavsson, B., Karlsson, A., Lundström, K. and Enfält, A.-C. 1994. Intramuscular fat and muscle fibre lipid contents in halothane-gene-free pigs fed high or low protein diets and its relations to meat quality. Meat Science 38: 269277.CrossRefGoogle ScholarPubMed
Goto, T., Iwamoto, H., Ono, Y., Nishimura, S., Matsuo, K., Nakanishi, Y., Umetsu, R. and Takahara, H. 1994. Comparative study on the regional composition of fiber types in M. Longissimus thoracis with different marbling scores for Japanese Black steers. Animal Science and Technology 65: 454463.Google Scholar
Greaser, M. L. 1986. Conversion of muscle to meat. In Muscle as food (ed. Bechtel, P. J.), pp. 37102. Academic Press, Orlando.CrossRefGoogle Scholar
Guerret, S., Rojkind, M., Druguet, M., Chevallier, M. and Grimaud, J.-A. 1988. Immunohistochemical micromethods for the measurement of specific collagen types in human liver biopsies. Collagen and Related Research 8: 249258.CrossRefGoogle ScholarPubMed
Harrington, W. F. and Rogers, M. E. 1984. Myosin. Annual Review of Biochemistry 53: 3573.CrossRefGoogle ScholarPubMed
Havenith, M. G., Visser, R., Schrijversvanschendel, J. M. C. and Bosman, F. T. 1990. Muscle fiber typing in routinely processed skeletal muscle with monoclonal antibodies. Histochemistry 93: 497499.CrossRefGoogle ScholarPubMed
Hoh, J. F. Y. 1979. Developmental changes in chicken skeletal muscle myosin isozymes. FEBS Letters 98: 267270.CrossRefGoogle Scholar
Hoh, J. F. Y., McGrath, P. A. and White, R. I. 1976. Electrophoretic analysis of multiple forms of myosis in fast-twitch and slow-twitch muscles of the chick. Biochemical Journal 157: 8795.CrossRefGoogle Scholar
Karlsson, A., Enfält, A.-C., Essèn-Gustavsson, B., Lundström, K., Rydhmer, L. and Stern, S. 1993. Muscle histochemical and biochemical properties in relation to meat quality during selection for increased lean tissue growth rate in pigs. journal of Animal Science 71: 930938.CrossRefGoogle ScholarPubMed
Klosowski, B., Bidwell, P. K., Klosowska, D. and Piotrowski, J. 1992. Microstructure of skeletal muscles of growing calves fed silage-based vs hay-based diets. II. Fibre type distribution. Reproduction, Nutrition, Development 32: 257263.CrossRefGoogle ScholarPubMed
Kyoto University Animal Care Committee. 1990. Guide for the care and use of animals. Kyoto University, Japan.Google Scholar
Lamed, R., Levin, Y. and Oplatka, A. 1973. Enzymatic mechanochemistry. 1. The interaction of heavy meromyosin with “immobilized adenosine triphosphate”. Biochemica el Biophysica Acta 305: 163171.CrossRefGoogle ScholarPubMed
Lamed, R. and Oplatka, A. 1974. Application of immobilized adenosine triphosphate in the study of myosin. Biochemistry 13: 31373142.CrossRefGoogle Scholar
Lòpez de Leòn, A. and Rojkind, M. 1985. A simple micromethod for collagen and total protein determination in formalin-fixed paraffin-embedded sections. journal of Histochemistry and Cytochemistry 33: 737743.CrossRefGoogle ScholarPubMed
Lowry, O. H., Resebrough, J., Farr, A. L. and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193: 265275.CrossRefGoogle ScholarPubMed
Manabe, N., Azuma, Y., Furuya, Y., Kuramitsu, K., Nagano, N. and Miyamoto, H. 1995a. Immunohistochemical Microquantification of Fast-Myosin in Frozen Histological Sections of Mammalian Skeletal Muscles. Journal of Animal Science 73: 8895.CrossRefGoogle ScholarPubMed
Manabe, N., Azuma, Y., Furuya, Y., Kuramitsu, K., Nagano, N. and Miyamoto, H. 1995b. Immunohistochemical quantitation for extracellular matrix proteins in rats with glomerulonephritis induced by monoclonal anti-Thy 1.1 antibody. Nephron 71: 7986.CrossRefGoogle ScholarPubMed
Manabe, N., Azuma, Y., Furuya, Y., Nagano, N. and Miyamoto, H. 1994a. A new immunohistochemical method for quantification of fast-myosin in frozen histologic sections of the rat skeletal muscles. journal of Veterinary Medical Science 56: 713.CrossRefGoogle ScholarPubMed
Manabe, N., Chevallier, M., Chossgros, P., Causse, X., Guerret, S., Trèpo, C. and Grimaud, J.-A. 1993b. Interferon-α2b therapy reduces liver fibrosis in chronic nonA, non-B hepatitis: A quantitative histological evaluation. Hepatology 18: 13441349.CrossRefGoogle Scholar
Manabe, N., Furuya, Y., Nagano, N. and Miyamoto, H. 1994b. Immunohistochemical microquantitation method for type I collagen in kidney histological section of the rats. Journal of Veterinary Medical Science 56: 147150.CrossRefGoogle ScholarPubMed
Manabe, N., Ishibashi, T. and Miyamoto, H. 1993a. Slow-twitch myofibers are observed in masseter muscle of the hypothalamic obese rat. Animal Science and Technology 64: 440447.Google Scholar
Manabe, N., Ishii, T. and Ishibashi, T. 1982. pH stability of myosin adenosine triphosphatase activity of the muscle fibers in the growing cattle, sheep and swine. Japanese Journal of Zootechnical Science 53: 6466.Google Scholar
Manabe, N., Ishii, T. and Ishibashi, T. 1988. Histochemical fiber type composition and fiber size in skeletal muscles of the growing cattle, sheep and swine. Memories of College of Agriculture Kyoto University 131: 2736.Google Scholar
Manabe, N., Sato, E., Watanabe, S. and Ishibashi, T. 1980. The skeletal muscle fiber types of the mammals. 1. Nyctereus procynoides, Mustela itatsi, Canis familiaris, Rhinolophus ferrumequinum, Crocidula dsinezumi, Journal of Mammalian Science 40: 8994.Google Scholar
Pette, D. and Staron, R. S. 1990. Cellular and molecular diversities of mammalian skeletal muscle fibers. Review of Physiology Biochemistry and Pharmacology 116: 176.Google ScholarPubMed
Picard, B., Leger, J. and Robelin, J. 1994. Quantitative determination of type I myosin heavy chain in bovine muscle with antimyosin monoclonal antibodies. Meat Science 36: 333343.CrossRefGoogle Scholar
Pullen, A. H. 1977. The distribution and relative sizes of fibre types in the extensor digitorum longus and soleus muscles of the adult rat. Journal of Anatomy 123: 467486.Google ScholarPubMed
Reiser, P. J., Moss, R. L., Giulian, G. G. and Greaser, M. L. 1985. Shortening velocity in single fibers from adult rabbit soleus muscles is correlated with myosin heavy chain composition. Journal of Biological Chemistry 260: 90779080.CrossRefGoogle ScholarPubMed
Robe, G. H. and Xiong, Y. L. 1992. Phosphates and muscle fiber type influence thermal transitions in porcine salt-soluble protein aggregation. Journal of Food Science 57: 13041307.CrossRefGoogle Scholar
Staron, R. S. and Pette, D. 1986. Correlation between myofibrillar ATPase activity and myosin heavy chain comoposition in rabbit muscle fibers. Histochemistry 86: 1923.CrossRefGoogle Scholar
Suzuki, A. 1971a. Histochemical classification of individual skeletal muscle fibers in the sheep. I. On M. semitendinosus, M. longissimus dorsi, M. psoas major, M. latissimus dorsi and M. gastrocnemius. Japanese Journal of Zootechnical Science 42: 3954.Google Scholar
Suzuki, A. 1971b. Histochemical classification of individual skeletal muscle fibers in the sheep. II. On M. serratus ventralis, M. supraspinatus, M. infraspinatus, M. semimembranosus and M. triceps brachii (Caput longum). Japanese Journal of Zootechnical Science 42: 463473.Google Scholar
Suzuki, A. 1973. Histochemical observations of individual skeletal muscle fibers in starved sheep. Japanese Journal of Zootechnical Science 44: 5058.Google Scholar
Suzuki, A. and Tamate, H. 1988. Distribution of myofiber types in the hip and thigh musculature of sheep. Anatomical Record 221: 494502.CrossRefGoogle ScholarPubMed
Termin, A., Staron, R. S. and Pette, D. 1989a. Myosin heavy chain isoforms in histochemically defined fiber types of rat muscle. Histochemistry 92: 453457.CrossRefGoogle ScholarPubMed
Termin, A., Staron, R. S. and Pette, D. 1989b. Changes in myosin heavy chain isoforms during chronic low-frequency stimulation of rat fast hindlimb muscles — a single fibre study. European Journal of Biochemistry 186: 749754.CrossRefGoogle Scholar