Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T10:14:29.516Z Has data issue: false hasContentIssue false

Phenotypic characterization, population structure, breeding management and recommend breeding strategy for Fogera cattle (Bos indicus) in Northwestern Amhara, Ethiopia

Published online by Cambridge University Press:  06 April 2016

Endalkachew Girma*
Affiliation:
Bahir Dar University Biotechnology Research Institute, Bahir Dar, Ethiopia, P.O. Box 79
Kefyalew Alemayehu
Affiliation:
Bahir Dar University Biotechnology Research Institute, Bahir Dar, Ethiopia, P.O. Box 79
Solomon Abegaze
Affiliation:
Ethiopian Biodiversity Institute (EBI), Addis Ababa, Ethiopia
Damitie Kebede
Affiliation:
Bahir Dar University Biotechnology Research Institute, Bahir Dar, Ethiopia, P.O. Box 79
*
Correspondence to: G. Endalkachew, Bahir Dar University Biotechnology Research Institute, Bahir Dar, Ethiopia. email: endalkgirma21@gmail.com
Get access

Summary

The study was carried out in selected districts in the Northwestern Amhara, from October 2012 to May 2013. The objective of the study were to undertake on-farm and on-station phenotypic characterization of Fogera Cattle in comparison with two different local cattle population, to characterize the population structure and to identifying trait preferences, breeding management and to recommend breeding strategy for Fogera cattle. Both purposive and random samplings were employed. Data were gathered through semi-structured questionnaire, focus group discussions, field observations, census data, direct count and body measurements. About 126 smallholder farmers were interviewed. About 21 quantitative and 17 qualitative phenotypic data types were also generated from 332 cattle. The Effective population size (Ne) and rate of inbreeding (ΔF) were calculated from the counted population structure data. Both GLM procedures of SAS and descriptive statistics of SPSS software's were employed for data analyses. The results indicated that Fogera cattle were kept mostly for milk (97.62 percent). The main threats identified for the survival of Fogera cattle were scarcity of feed resources and interbreeding with other indigenous cattle, which are less demanding in terms of feed. Fogera cattle population has specific morphological appearance. Generally about 65.2 percent of male pure-Fogera cattle population are having large hump and large dewlap (93.5 percent) with cervico-thoracic (82.6 percent) hump position and long tail (97.8 percent), respectively. The coat pattern of male pure-Fogera cattle is dominated by the spotted coat pattern (82.6 percent) with 43.5 percent white black and 39.1 percent black white coat colour. Female Fogera cattle have medium (94.4 percent) hump size at cervico-thoracic positions (73.2 percent), large dewlap (62.7 percent) and long tail which is well below the hock (91.5 percent). The coat pattern of female pure-Fogera cattle is dominated by white spotted (80.3 percent) with 43.0 percent white black and 33.1 percent black white coat colour Most of the quantitative traits were highly significantly (P ≤ 0.001) affected by breed type. Except horn length and horn space all of quantitative traits for both sexes of pure-Fogera cattle from on-station were significantly (P ≤ 0.05) larger than those of the on-farm. The average linear body measurement taken on a total of 46 male pure-Fogera cattle populations were 42.68 ± 0.56 cm (mouth circumference), 16.35 ± 0.72 cm (horn length), 37.04 ± 1.16 cm (dewlap width) and 129.17 ± 1.33 cm (height at wither). The average linear body measurements for female pure-Fogera cattle were 38.23 ± 0.18 cm (mouth circumference), 13.81 ± 0.37 cm (horn length), 27.20 ± 0.42 cm (dewlap width) and 123.68 ± 0.52 cm (height at wither). The population structure were dominated by Pure-Fogera constituting 37.02 percent, Interbred with Fogera (33.71 percent) and non-Fogera (29.23 percent). The effective population size of pure-Fogera cattle was 4295, with 9016 total population. The average inbreeding level for the population was 0.012 percent. Inbreeding is at a low level and the effective population size is large. The calculated parameters indicate satisfactory genetic diversity in Fogera cattle. Milk yield, colour, power, body size and growth rate of Fogera were the most dominant traits perceived to be good by the respondents. The special qualification of this breed is to live at high amount of flooding areas with adapting other very challenging environment. Pure breeding of pure-Fogera, interbred with Fogera and non-Fogera type of breeds was used for breeding practice with natural mating. The Andassa Research Center established in 1964 as Fogera cattle population improving centre, but according to different source, population viability and population structure indicated that the population are not viable and highly admixture with other indigenous cattle breeds. According to this in order to improve the population status of Fogera cattle we recommended control with open-nucleus breeding strategy. So in order to minimize the risk status of this breed and conserve for the future generation any responsible agent should be given priority.

Résumé

L'accroissement individuel des coefficients de consanguinité (ΔFi) a été recommandé comme une mesure alternative de la consanguinité du fait qu'il tient compte des différences dans la connaissance que l'on a de la généalogie des animaux individuels et vu qu'il évite la surestimation résultant d'un plus grand nombre de générations connues. L'effet de la consanguinité (F) et de la consanguinité équivalente (EF), celles-ci calculées à partir de ΔFi, sur les paramètres de croissance a été étudié dans des troupeaux de moutons Nilagiri et Sandyno. L’étude s'est basée sur des données conservées à la Station de Recherche pour l'Amélioration des Ovins (Sandynallah). La généalogie était moins connue et le nombre équivalent de générations était plus faible pour les moutons Sandyno que pour les moutons Nilagiri. Les valeurs moyennes de F et de EF pour la population Nilagiri ont été respectivement de 2,17 et 2,44, avec les valeurs correspondantes pour les moutons Sandyno ayant été respectivement de 0,83 et 0,84. Dans les deux populations, l’évolution suivie au cours des années par la consanguinité montre que EF était plus élevée dans les premières générations, pour lesquelles moins d'information sur la généalogie était disponible. Parmi les effets significatifs de la consanguinité, la dépression de la croissance a varié de 0,04 kg pour le poids au sevrage à 0,10 kg pour le poids à un an de vie pour chaque 1 pour cent d'augmentation de la consanguinité. En général, les caractères affectés par la consanguinité ont été plus nombreux chez les moutons Nilagiri, pour lesquels une plus forte dépression des paramètres de croissance avec F qu'avec EF a été observée. L'obtention de valeurs plus élevées pour EF que pour F dans les premières générations des deux populations révèle que EF a évité la possible surestimation du coefficient de consanguinité dans les générations récentes. La dépression de la croissance par l'effet significatif de la consanguinité a été plus forte dans la population Sandyno. Les différences décelées dans les deux populations pour ce qui est de la réponse à F et à EF et les causes possibles de ces différences sont dûment discutées.

Resumen

El incremento individual de los coeficientes de endogamia (ΔFi) ha sido recomendado como una medida alternativa de la endogamia ya que tiene en cuenta las diferencias en el conocimiento que se tiene de la genealogía de animales individuales y evita la sobreestimación debida a un mayor número de generaciones conocidas. El efecto de la endogamia (F) y de la endogamia equivalente (EF), calculadas a partir de ΔFi, sobre los parámetros de crecimiento fue estudiado en rebaños de ovejas Nilagiri y Sandyno. El estudio se basó en datos conservados en la Estación de Investigación para la Mejora del Ganado Ovino (Sandynallah). Se dispuso de menos información sobre la genealogía y el número equivalente de generaciones fue menor para las ovejas Sandyno que para las ovejas Nilagiri. Los valores medios de F y EF para la población Nilagiri fueron de 2,17 y 2,44, respectivamente, y los valores correspondientes para las ovejas Sandyno fueron de 0,83 y 0,84, respectivamente. En ambas poblaciones, la evolución seguida a lo largo de los años por la endogamia hizo ver que EF era mayor en las generaciones tempranas, en las que la información sobre la genealogía fue escasa. Entre los efectos significativos de la endogamia, la depresión del crecimiento varió de 0,04 kg en el peso al destete a 0,10 kg en el peso al año de vida por cada 1 por ciento de incremento de la endogamia. En general, fueron más los caracteres que se vieron afectados por la endogamia en las ovejas Nilagiri, en las cuales se observó una mayor depresión de los parámetros de crecimiento con F que con EF. La detección de mayores valores para EF que para F en generaciones tempranas de ambas poblaciones indica que EF evitó la posible sobreestimación del coeficiente de endogamia en generaciones recientes. La depresión detectada en parámetros de crecimiento por un efecto significativo de la endogamia fue mayor en la población Sandyno. Se discuten debidamente las diferencias advertidas en las dos poblaciones en la respuesta a F y EF y las posibles causas de estas diferencias.

Type
Research Article
Copyright
Copyright © Food and Agriculture Organization of the United Nations 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Addisu, B., Mengistie, T., Adebabay, K., Getinet, M., Asaminew, T., Tezera, M. & Gebeyehu, G. 2010. Milk yield and calf growth performance of cattle under partial suckling system at Andassa Livestock Research Centre, North West Ethiopia.Google Scholar
Agricultural Growth Project – Livestock Market Development Value Chain Analysis for Ethiopia (AGP) 2013. Meat and live animals hides, skins and leather dairy expanding livestock markets for the small-holder producers. Prepared by AGP-Livestock Market Development Project AID-663-C-12-00009.Google Scholar
Alberro, M. & Haile Mariam, S. 1982. The indigenous cattle of Ethiopia. I. World Animal Review41.Google Scholar
Alemu, M., Ayenalem, H., Tadele, D. & Yoseph, M. 2012. On farm characterization of Horro cattle breed production systems in western Oromia, Ethiopia. Livestock Research for Rural Development. Volume 24, Article #100. Retrieved November 14, 2014, (available at http://www.lrrd.org/lrrd24/6/meko24100.htmShiferaw) Garoma 2006 In-situ phenotypic characterization of Kereyu cattle type in Fentalle district of Oromia region, Ethiopia. Presented to the School of Graduate Studies of Haramaya University, Haramaya, Ethiopia. (M.Sc. thesis).Google Scholar
Barker, J.S.F. 2002. Relevance of animal genetic resources and differences to th e plant sector. In Groeneveld, E., Glodek, P., eds. Animal breeding & animal genetics research pp. 1521. Gottingen, Braunschweig, Germany, Federal Agricultural Research Centre (FAL), Mariensee and Institute of Animal Genetics.Google Scholar
Berger, J. & Cunningham, C. 1995. Multiple bottlenecks, allopatric lineages, and badlands bison bison: consequences of lineage mixing. Biol. Conserv., 71: 1323.Google Scholar
Caballero, A. 1994. On the effective size of populations with separate sexes, with particular reference to sex-linked genes. Genetics 130: 909916.CrossRefGoogle Scholar
Chencha, C., Workneh, A. & Zewdu, W. 2013. On-farm phenotypic characterization of indigenous cattle populations of Gamo Goffa zone . Wollo Univesity, Southern Ethiopia. (M.Sc. thesis in agriculture).Google Scholar
CSA 2014. Agricultural sample survey, report on livestock and livestock characteristics for the year 2013/2014. Addis Ababa, Ethiopia, CSA, 194 pp.Google Scholar
Falconer, D.S. 1989. Introduction to quantitative genetics. New York, NY, John Wiley and Sons, Inc.Google Scholar
Falconer, D.S. and Mackay, T.F.C. 1996. Introduction to quantitative genetics, 4th edition. Harlow, UK, Longman Scientific and Technical.Google Scholar
FAO 2007. Global plan of action for animal genetic resources and the interlaken declaration. Rome, Italy. (available at ftp://ftp.fao.org/docrep/fao/010/a1404e/a1404e00.pdf).Google Scholar
FAO 2011a. Status and trends of animal genetic resources – 2010. Thirteenth Regular Session, Rome, Commission on Genetic Resources for Food and Agriculture, 18–22 July 2011 (CGRFA-13/11/Inf.17). Rome.Google Scholar
FAO 2012. Phenotypic characterization of animal genetic resources. FAO Animal Production and Health Guidelines No. 11. Rome (available at http://www.fao.org/docrep/015/i2686e/i2686e00.htm).Google Scholar
Fasil, G. & Workneh, A. 2014. On-farm phenotypic characterization of indigenous cattle populations of Awi, East and West Gojjam Zones of Amhara Region, Ethiopia. Res. J. Agric. Environ. Manage., 3(4): 227237. (Available at http://www.apexjournal.org).Google Scholar
Frankham, R., Ballou, J.D. & Briscoe, D.A. 2004. Primers of conservation genetics: a brief introduction to the general principles of conservation genetics, 1st edition. Cambridge University press, UK. p. 238.Google Scholar
Gebeyehu, G., Azage, T., Tezera, M. & Aklilu, A. 2003. Preliminary Report on the Distribution of Fogera Cattle around Lake Tana, Ethiopia. Proceedings of the 11th annual conference of the Ethiopian Society of Animal Production (ESAP) held in Addis Ababa, Ethiopia, August 28–30, 2003.Google Scholar
Hedrick, P.W. 2000 Application of population genetics and molecular techniques to conservation, In Young, A. & Clarke, G., eds. Genetics, demography, and viability of fragmented populations, pp. 113125. Cambridge Univ. Press.CrossRefGoogle Scholar
Hedrick, P.W., Kalinowski, S.T. 2000. Inbreeding depression in conservation biology. Annu. Rev. Ecol. Syst., 31: 139162.Google Scholar
Hoffmann, I. 2010. Livestock biodiversity. Rev. Sci. Tech. Off. Int. Epiz., 29(1): 7386.CrossRefGoogle ScholarPubMed
Institute of Biodiversity Conservation 2004. The state of Ethiopia's farm animal genetic resources: Country Report. A Contribution to the First Report on the State of the World's Animal Genetic Resources. IBC. May 2004, Addis Ababa, Ethiopia.Google Scholar
Jiregna, D. 2007. Characterization of cattle genetic resources in their production system context in Danno district, west Showa, Oromia, Ethiopia . presented to the School of Graduate Studies of Haramaya University, Haramaya, Ethiopia. (M.Sc. thesis).Google Scholar
Maiwashe, A., Nephawe, K.A., Van der Westhuizen, R.R., Mostert, B.E. & Theron, H.E. 2006. Rate of inbreeding and effective population size in four major South African dairy cattle breeds. S. Afr. J. Anim. Sci. 36: 5057.Google Scholar
Mao, Y., Chang, H., Yang, Z., Xu, M., Zhang, L., Chang, G., Song, W. & Wang, D. 2006. The genetic diversity and phylogenetic status of Luxi cattle. Agric. Sci. China, 5(8): 629634.Google Scholar
Mwambene, P.L., Katule, A.M., Chenyambuga, S.W. and Mwakilembe, P.A.A. 2012. Fipa cattle in the southwestern highlands of Tanzania: morphometric and physical characteristics. Anim. Genet. Resour., 2012, 51, 1529. © Food and Agriculture Organization of the United Nations, 2012.Google Scholar
Nomura, T. 1996. Effective size of selected populations with overlapping generations. J. Anim. Breed. Genet., 113: 116.Google Scholar
Nomura, T., Honda, T. & Mukai, F. 2001. Inbreeding and effective population size of Japanese Black cattle. J ANIM SCI 2001, 79: 366370.Google Scholar
Philipsson, J., Rege, J.E.O. & Okeyo, A.M. 2006. Sustainable breeding for tropical farming systems. In Ojango, J.M., Malmfors, B. & Okeyo, A.M., eds. Anim. Genet. Resour., version 2.2006. International Livestock Research Institute, Nairobi, Kenya, and Swedish University of Agricultural Sciences, Uppsala, Sweden.Google Scholar
Rege, J.E.O. 1999. The state of African cattle genetic resources. I. Classification framework and identification of threatened and extinct breeds. FAO/UNEP Anim. Genet. Res. Inf. Bull. 25: 125.Google Scholar
Rege, J.E.O. & Tawah, C.L. 1999. The state of African cattle genetic resources II: geographical distribution, characteristics and uses of present-day breeds and strains.Anim. Genet. Resour. Inf., 26: 125.Google Scholar
Rowlands, J., Nieves, C., Hanotte, O. & Workneh, A. 2006. Cattle breed distributions across districts as determined from cluster analysis of phenotypic data collected in the Oromiya region, Ethiopia. In 8th World Congress on Genetics Applied to Livestock Production, August 13–18, 2006, Belo Horizonte, MG, Brazil.Google Scholar
SAS. 1999. SAS/STAT user’s guide, version 8, Cary, NC: SAS institute Inc., 1999. p3884.Google Scholar
Shah, T.M., Patel, J.S., Bhong, C.D., Doiphode, A., Umrikar, U.D., Parmar, S.S., Rank, D.N., Solanki, J.V. & Joshi, C.G. 2012. Evaluation of genetic diversity and population structure of west-central Indian cattle breeds. Anim. Genet., 44(4): 442445.Google Scholar
Shiferaw, G. 2014. In-situ phenotypic characterization of kereyu cattle type in fentalle district of Oromia region, Ethiopia. M.Sc. thesis in agriculture (animal genetics and breeding). Haramaya University. Ethiopia. Afr. J. Agri. Res., 8(45): 56455650.Google Scholar
Simianer, H., Marti, S., Gibson, J., Hanotte, O. & Rege, J.E.O. 2003. An approach to the optimal allocation of conservation funds to minimize loss of genetic diversity between livestock breeds. Ecol. Econ., 45: 377392.CrossRefGoogle Scholar
Takele, T. 2005. On-farm phenotypic characterization of Sheko breed of cattle and their habitat in bench Maji zone, Ethiopia . Alemaya University, Ethiopia. (M.Sc. thesis).Google Scholar
Workneh, A., Ephrem, G., Markos, T., Yetnayet, M. and Rege, J.E.O. 2004. Current state of knowledge on characterization of farm animal genetic resources in Ethiopia. Farm animal biodiversity in Ethiopia: status and prospects. Proceedings of the 11th annual conference of the Ethiopian Society of Animal Production (ESAP) August 28–30, 2003. Addis Ababa, Ethiopia, pp. 122.Google Scholar
Wright, S. 1922. Coefficients of inbreeding and relationship. Am. Nat., 56: 330338.Google Scholar
Zewdu, W. 2004. Indigenous cattle genetic resources, husbandry practices and breeding objectives in Northwestern Ethiopia . School of Graduate Studies, Alemaya University. (M.Sc. thesis).Google Scholar