Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-15T13:04:59.740Z Has data issue: false hasContentIssue false

Genetic resistance to endoparasites in sheep and goats. A review of genetic resistance to gastrointestinal nematode parasites in sheep and goats in the tropics and evidence for resistance in some sheep and goat breeds in sub-humid coastal Kenya

Published online by Cambridge University Press:  01 August 2011

R.L. Baker
Affiliation:
International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi, Kenya
Get access

Summary

The evidence for both between- and within- breed genetic variation for resistance to gastrointestinal (GI) nematode parasites is reviewed. It is concluded that much of the published research on breed characterisation for resistance suffers from poor experimental design. Prior to the initiation of a 6-year study that has just been completed in coastal Kenya there were no estimates of within-breed genetic variation (i.e. heritabilities) of resistance in sheep or goats in the tropics. This study has confirmed that Red Maasai sheep and Small East African (SEA) goats are more resistant to GI parasites (predominantly Haemonchus contortus) than Dorper sheep and Galla goats. Heritability estimates for logarithm transformed faecal egg counts (an indicator of resistance) in 8-month-old lambs was 0.18±0.08 for all lambs, but higher in the susceptible Dorper-sired lambs (0.35±0.16) than in the resistant Red Maasai-sired lambs (0.06±0.07). This difference in heritability suggests that many centuries of natural selection have fixed most of the genes for resistance in the Red Maasai sheep. The resistant Red Maasai sheep and SEA goats were two to three times more productive than the susceptible Dorper sheep and Galla goats in the sub-humid coastal Kenya environment.

Resumen

Se presenta una revisión de la variación genètica entre y dentro de las razas para la resistencia a los nematodos gastrointestinales (GI). Se concluye que mucha de la investigación publicada sobre la caracterización de las razas para la resistencia carecen de diseño experimental. Antes de iniciar el estudio de 6 años que acaba de concluirse en la costa del Kenya, no se encontraban estimaciones acerca de la variación genética dentro de la raza (por ejemplo la heredabilidad) para la resistencia en ovinos y caprinos en zonas del trópico. Este estudio ha confirmado que la raza ovina Red Maasai y la cabra Small East Africa (SEA) son más resistentes a los parasitos GI (sobre todo a Haemonchus contortus) que la oveja Dorper y la cabra Galla. La estimación de la heredabilidad del logaritmo transformado del número de huevos fecales (que es un indicador de resistencia) en corderos de 8 meses era de 0,18±0,8 para todos los corderos, pero era superior en los machos susceptibles de raza Dorper (0,35±0,16) en comparación con los corderos resistentes de raza Red Maasai (0,06±0,07). Esta diferencia en la heredabilidad sugiere que muchos siglos de selección natural han fijado muchos de los genes para la resistencia en la oveja Red Maasai. La raza Red Maasai y la cabra SEA eran de dos a tres veces más productivas que la oveja susceptible de raza Dorper y que la cabra Galla en un medio como la zona subhumida de la costa del Kenya.

Type
Research Articles
Copyright
Copyright © Food and Agriculture Organization of the United Nations 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albers, G. A. A., Gray, G. D., Piper, L. R., Barker, J. S. F., Le Jambre, L. F. & Barger, L. A. 1987. The genetics of resistance and resilience to Haemonchus contortus infection in young Merino sheep. International Journal for Parasitology 17: 13551363.Google ScholarPubMed
Bain, R. K., Wanyangu, S. W., Mugambi, J. M., Ihiga, M. A., Duncan, J. L. & Stear, M. J. 1993. Genetic resistance of Red Maasai sheep to Haemonchus contortus. Proceedings of the 11th Scientific Workshop of the Small Ruminant Collaborative Research Support Program (SR-CRSP), March 1993, Nairobi, Kenya, 120126.Google Scholar
Baker, R. L. 1995. Genetics of disease resistance in small ruminants in Africa. In: Gray, G. D.Woolaston, R. R. & Eaton, B.T. (Eds), Breeding for Resistance to Infectious Diseases of Small Ruminants, ACIAR Monograph No 34, Canberra, Australia, 120138.Google Scholar
Baker, R. L., Lahlou Kassi, A., Rege, J. E. O., Reynolds, L., Bekele, T., Mukassa-Mugerwa, E. & Rey, B. 1992. A review of genetic resistance to endoparasites in small ruminants and an outline of ILCA's research programme in this area. Proceedings of the 10th Scientific Workshop of the Small Ruminant Collaborative Research Support Program, Nairobi, Kenya, 79104.Google Scholar
Baker, R. L., Mwamachi, D. M., Audho, J. O. & Thorpe, W. 1994a. Genetic resistance to gastrointestinal nematode parasites in Red Maasai sheep in Kenya. Proceedings of the 5th World Congress on Genetics Applied to Livestock Production, 7–12 August, 1994, Guelph, Canada, 20: 277280.Google Scholar
Baker, R. L., Mwamachi, D. M., Audho, J. O. & Thorpe, W. 1994b. Genetic resistance to gastrointestinal parasites in Red Maasai, Dorper and Red Maasai x Dorper ewes in coastal Kenya. Proceedings of the 12th SR-CRSP Scientific Workshop, March, 1994, Nairobi, Kenya, 100109.Google Scholar
Baker, R. L., Mwamachi, D. M., Audho, J. O., Aduda, E. O. & Thorpe, W. 1998a. Resistance of Galla and Small East African goats in the sub-humid tropics to gastrointestinal nematode infections and the peri-parturient rise in faecal egg counts. Veterinary Parasitology (in press).Google Scholar
Baker, R. L., Rege, J. E. O., Tembely, S., Mukasa-Mugerwa, E., Anindo, D., Mwamachi, D. M., Thorpe, W. & Lahlou-Kassi, A. 1998b. Genetic resistance to gastrointestinal nematode parasites in some indigenous breeds of sheep and goats in East Africa. Proceedings of the 6th World Congress on Genetics Applied to Livestock Production, Armidale, Australia, 25:269272.Google Scholar
Barger, I. A. & Sutherst, R. W. 1991. Population biology of host and parasite. In: Gray, G.D. & Woolaston, R.R. (Eds) Breeding for Disease Resistance in Sheep, Australian Wool Corporation, Melbourne, Australia, 5156.Google Scholar
Bisset, S. A. & Morris, C. A. 1996. Feasibility and implications of breeding sheep for resilience to nematode challenge. International Journal for Parasitology, 26: 857868.CrossRefGoogle ScholarPubMed
Bisset, S. A., Morris, C.A., Squire, D. R., Hickey, S. M. & Wheeler, M. 1994. Genetics of resilience to nematode parasites in Romney sheep. New Zealand Journal of Agricultural Research, 37: 521534.CrossRefGoogle Scholar
Bouix, J., Vu Tun Khang, J., Mandonnet, N. & Grüner, L. 1995. Response to artificial infections with Teladorsagia circumcincta in sheep bred for resistance to natural infections. International Conference on Novel Approaches to the Control of Helminth Parasites of Livestock, University of New England, Armidale, N. S. W., Australia, 18–21 April, 1995, Abstract Booklet, 33.Google Scholar
Boyce, W. M., Courtney, C. H. & Loggins, P. E. 1987. Resistance to experimental infection with Fasciola hepática in exotic and domestic breeds of sheep. International Journal for Parasitology, 17: 12331237.CrossRefGoogle ScholarPubMed
Bradford, G. E. & Fitzhugh, H. A. 1983. In: Fitzhugh, H.A. & Bradford, G.E. (Eds), Hair sheep of Western Africa and the Americas. A Genetic Resource for the Tropics, Westview Press, Boulder, Colorado, USA, 322.Google Scholar
Clunies-Ross, I. 1932. Observations on the resistance of sheep to infestation by the stomach worm, Haemonchus contortus. Journal of the Council for Scientific and Industrial Research, 5: 7380.Google Scholar
Dargie, J. D. 1982. The influence of genetic factors on the resistance of ruminants to gastro-intestinal nematode and trypanosome infections. In: Owen, D.G. (Ed.), Animal Models in Parasitology, McMillan Press Ltd, London U. K., 1751.CrossRefGoogle Scholar
Douch, P. G. C., Green, R. S., Morris, C.A., McEwan, C. A. & Windon, R. G. 1996. Phenotypic markers for selection of nematode resistant sheep. International Journal for Parasitology, 26: 899911.CrossRefGoogle ScholarPubMed
Eady, S. J. 1995. Phenotypic traits associated with resistance to internal parasites. In: Gray, G.D., Woolaston, R. R. and Eaton, B.T. (Eds), Breeding for Resistance to Infectious Diseases of Small Ruminants, ACIAR Monograph No. 34, Canberra, Australia, 219236.Google Scholar
Fabiyi, J. P. 1987. Production losses and control of helminths in ruminants of tropical regions. International Journal for Parasitology, 17: 435442.CrossRefGoogle ScholarPubMed
Gray, G. D. 1991. Breeding for resistance to Trichostrongyle nematodes in sheep. In: Owen, J.B. & Axford, R.F.E. (Eds), Breeding for Disease Resistance in Farm Animals, CAB International, Wallingford U. K., 139161.Google Scholar
Gray, G. D. and Woolaston, R. R. 1991. Breeding for Disease Resistance in Sheep. Wool Research and Development Corporation, Melbourne, Australia, pp. 151.Google Scholar
Gray, G. D., Gill, H. S. & Woolaston, R. R. 1991. Relationships among sheep diseases of commercial importance. In: Gray, G.D. & Woolaston, R.R. (Eds) Breeding for Disease Resistance in Sheep, Wool Research and Development Corporation, Melbourne, Australia, 5765.Google Scholar
Gray, G. D., Woolaston, R. R. & Eaton, B. T. 1995. Breeding for Resistance to Infectious Diseases of Small Ruminants. Australian Centre for International Agricultural Research (ACIAR) Monograph No. 34, Canberra, Australia, pp. 322.Google Scholar
Gray, G. D., Presson, B. L., Albers, G. A. A., Le Jambre, L. F., Piper, L. R. & Barker, J. S. F. 1987. Comparison of within -and between-breed variation in resistance to haemonchosis in sheep. In: McGuirk, B.J. (Ed.), Merino Improvement Programs in Australia, Australian Wool Corporation, 365369.Google Scholar
Gruner, L. 1991. Breeding for helminth resistance in sheep andxs goats. In: Axford, R. F. E. & Owen, J.B. (Eds) Breeding for Disease Resistance in Farm Animals, CAB International, Wallingford U. K., 187200.Google Scholar
Hansen, J. & Perry, B. 1994. The Epidemiology, Diagnosis and Control of Helminth Parasites of Ruminants. Second edition, ILRAD, Nairobi, Kenya, pp. 171.Google Scholar
Harvey, W. R. 1990. Users guide for the PC-2 version of the LSMLMW and MIXMDL mixed model least squares and maximum likelihood computer program, Ohio State University, Columbus, USA.Google Scholar
ILCA (International Livestock Centre for Africa). 1991. Proceedings of the Research Planning Workshop on Resistance to Endoparasites in Small Ruminants. 5–7 February 1991, ILCA, Addis Ababa, Ethiopia, pp. 78.Google Scholar
Johnson, D. L. & Thompson, R. 1995. Restricted Maximum Likelihood estimation of variance components for univariate animal models using sparse matrix techniques and average information. Journal of Dairy Science 78: 449456.Google Scholar
McKenna, P. B. 1981. The diagnostic value and interpretation of faecal egg counts in sheep. New Zealand Veterinary Journal 29: 129132.Google ScholarPubMed
Morris, C.A., Watson, T. G., Bisset, S. A., Vlassoff, A. & Douch, P. G. C. 1995. Breeding sheep in New Zealand for resistance or resilience to nematode parasites. In: Gray, G. D., Woolaston, R. R. & Eaton, B.T. (Eds), Breeding for Resistance to Infectious Diseases of Small Ruminants, ACIAR Monograph No. 34, Canberra, Australia, 7798.Google Scholar
Mugambi, J. M., Wanyangu, S. W., Bain, R. K., Owango, M.O., Duncan, J. L. & Stear, M. J. 1996. Response of Dorper and Red Maasai lambs to trickle Haemonchus contortus infections. Research in Veterinary Science, 61: 218221.CrossRefGoogle ScholarPubMed
Osinowo, O. A. & Abubakar, B. Y. 1988. Appropriate breeding strategies for small ruminant production in West and Central Africa. In: Adeniji, K. O. (Ed), Proceedings of the Workshop on the Improvement of Small Ruminants in West and Central Africa, OAU/IBAR, Nairobi, Kenya, 7184.Google Scholar
Owen, J. B. & Axford, R. F. E. 1991. Breeding for Disease Resistance in Farm Animals. CAB International, Wallingford, United Kingdom, pp. 499.Google Scholar
Piper, L. R. & Barger, I. A. 1988. Resistance to gastrointestinal strongyles: feasibility of a breeding programme. In: Proceedings of the 3rd World Congress on Sheep and Beef Cattle Breeding, Paris, France, Vol. 1: 593611.Google Scholar
Preston, J. M. & Allonby, E. W. 1978. The influence of breed on the susceptibility of sheep and goats to a single experimental infection with Haemonchus contortus. Veterinary Record, 103: 509512.CrossRefGoogle ScholarPubMed
Preston, J. M. & Allonby, E. W. 1979. The influence of breed on the susceptibility of sheep to Haemonchus contortus. Research in Veterinary Science, 26: 134139.CrossRefGoogle ScholarPubMed
Roberts, J. A., Estuningsih, E., Widjayanti, S., Wiedosari, E., Partoutomo, S. & Spithill, T. W. 1997a. Resistance of Indonesian Thin Tail sheep against Fasciola gigantica and F. hepática. Veterinary Parasitology, 68: 6978.CrossRefGoogle ScholarPubMed
Roberts, J. A., Widjayanti, S., Estuningsih, E. & Hetzel, D. J. S. 1997b. Evidence for a major gene determining the resistance of Indonesian Thin Tail sheep against Fasciola gigantica. Veterinary Parasitology, 68: 309314.CrossRefGoogle Scholar
Shavulimo, R. S., Rurangirwa, F., Ruvuna, F., James, A. D., Ellis, P. R. & McGuire, T. 1988. Genetic resistance to gastrointestinal nematodes, with special reference to Haemonchus contortus, in three breeds of goats in Kenya. Bulletin of Animal Health and Production in Africa, 36: 233241.Google Scholar
Smith, O. B. 1988. Health packages for the small-holder farmers in West and Central Africa. In: Adeneji, K.O. (Ed.) Proceedings of the Workshop on the Improvement of Small Ruminants in West and Central Africa, OAU/IBAR, Nairobi, Kenya, 211221.Google Scholar
Waller, P. J. 1997. Anthelmintic resistance. Veterinary Parasitology, 72: 391412.CrossRefGoogle ScholarPubMed
Wiedosari, E. & Copeman, D. B. 1990. High resistance to experimental infection with Fasciola gigantica in Javanese thin tail sheep. Veterinary Parasitology, 37: 101111.CrossRefGoogle Scholar
Windon, R. G. 1990. Selective breeding for the control of nematodiasis in sheep. Reviews Scientifiques et Technicales de l'Office internationale de Epizooties, 2: 555576.Google Scholar
Windon, R. G. 1991. Resistance mechanisms in the Trichostrongylus selection flock. In: Gray, G.D. & Woolaston, R.R. (Eds) Breeding for Disease Resistance in Sheep, Australian Wool Corporation, Melbourne, 7786.Google Scholar
Woolaston, R. R. 1997. Detecting genetic differences among groups of sheep during parasite infection. International Journal for Parasitology, 27: 839841.CrossRefGoogle ScholarPubMed
Woolaston, R. R. & Baker, R. L. 1996. Prospects of breeding small ruminants for resistance to internal parasites. International Journal for Parasitology, 26: 845855.CrossRefGoogle ScholarPubMed
Woolaston, R. R. & Eady, S. J. 1995. Australian research into genetic resistance to nematode parasites. In: Gray, G. D., Woolaston, R. R. & Eaton, B.T. (Eds), Breeding for Resistance to Infectious Diseases of Small Ruminants, ACIAR Monograph No. 34, Canberra, Australia, 5376.Google Scholar
Woolaston, R. R., Elwin, R. L. & Barger, I. A. 1992. No adaptation of Haemonchus contortus to genetically resistant sheep. International Journal for Parasitology, 22: 377380.CrossRefGoogle ScholarPubMed
Woolaston, R. R., Windon, R. G. & Gray, G. D. 1991. Genetic variation in resistance to internal parasites in the Armidale experimental flocks. In: Gray, G.D. & Woolaston, R.R. (Eds) Breeding for Disease Resistance in Sheep, Australian Wool Corporation, Melbourne, 19.Google Scholar