Skip to main content Accessibility help
×
Home
Hostname: page-component-568f69f84b-r4dm2 Total loading time: 0.191 Render date: 2021-09-22T13:09:07.210Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Glomerular Filtration Rate and Electrolyte Handling in Response to Sodium Loading and Depletion. A Twin Study

Published online by Cambridge University Press:  01 August 2014

C.E. Grim*
Affiliation:
Departments of Medicine and Medical Genetics, Indiana University School of Medicine, Indianapolis
Judy Z. Miller
Affiliation:
Departments of Medicine and Medical Genetics, Indiana University School of Medicine, Indianapolis
Joe C. Christian
Affiliation:
Departments of Medicine and Medical Genetics, Indiana University School of Medicine, Indianapolis
*Corresponding
Specialized Center of Research (SCOR) in Hypertension, Indiana University School of Medicine, 1100 West Michigan Street, Indianapolis, IN 46202

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Possible genetic influences on glomerular filtration rate and electrolyte excretion were investigated in 55 (37 monozygotic, 18 dizygotic) young adult white twin pairs. Subjects were studied during a five-day hospitalization involving sodium loading and sodium depletion. No evidence of genetic variability was found in the control levels of serum or urine sodium and potassium. Following a saline infusion it was possible to detect genetic influence in electrolyte handling. Creatinine clearance, used as a measure of glomerular filtration rate, did not appear to be genetically mediated. The results indicate that genetic factors are important in sodium handling in normal individuals and that this is independent of glomerular filtration rate.

Type
Research Article
Copyright
Copyright © The International Society for Twin Studies 1979

References

1.Bianchi, G, Baer, PG, Fox, U, Duzzi, L, Pgetti, D, Giovannetti, AM (1975): Changes in renin, water balance, and sodium balance during development of high blood pressure in genetically hypertensive rats. Circ Res (Suppl 1) Vol 36–37, pp 1–153, 1161.CrossRefGoogle ScholarPubMed
2.Borhani, NO, Feinleib, M, Garrison, RJ, Christian, JC, Rosenman, RH 1976: Genetic variance in blood pressure. Acta Genet Med Gemellol 25:137144.CrossRefGoogle ScholarPubMed
3.Christian, JC, Kang, KW, Norton, JA Jr 1974: Choice of an estimate of genetic variance from twin data. Am J Hum Genet 26:154161.Google ScholarPubMed
4.Christian, JC, Feinleib, M, Norton, JA Jr (1975): Statistical analysis of genetic variance in twins. Am J Hum Genet 27:807.Google ScholarPubMed
5.Christian, JC, Norton, JA Jr 1977: A proposed test of the differences between the means of monozygotic and dizygotic twins. Acta Genet Med Gemellol 26:4954.CrossRefGoogle Scholar
6.Christian, JC 1979: Testing twin means and estimating genetic variance. Basic methodology for the analysis of quantitative twin data. Acta Genet Med Gemellol 28:3540.CrossRefGoogle ScholarPubMed
7.Dahl, LK, Knudsen, KD, Heine, MA, Leitl, GJ (1968): Modification of experimental hypertension in the rat by variations in the diet. Circ Res 22:1118, 1968.CrossRefGoogle ScholarPubMed
8.Dahl, LK, Heine, M, Thompson, K, 1972: Genetic influence of renal homografts on the blood pressure of rats from different strains. Proc Soc Exp Biol Med 140:852856.CrossRefGoogle ScholarPubMed
9.Elston, RC, Boklage, CE (1977): An examination of the fundamental assumptions of the twin method. In Back, Net al (eds): “Progress in Clinical and Biological Research: Twin Research. Part A: Psychology and Methodology.” New York: Alan R. Liss, pp 189199.Google Scholar
10.Grim, CE, Weinberger, MH, Higgins, JT, Kramer, NJ 1977: Diagnosis of secondary forms of hypertension. JAMA 237:13311335.CrossRefGoogle ScholarPubMed
11.Grim, CE, Weinberger, MH, Henry, DP, Luft, FL, Fineberg, NS 1978: Biochemical correlates of the increase in blood pressure with age. Clin Sci Mol Med 55:377379.Google Scholar
12.Haseman, JK, Elston, RC 1970: The estimate of genetic variance from twin data. Behav Genet 1:1119.CrossRefGoogle Scholar
13.McIlhany, ML, Shaffer, JW, Hines, EA 1975: The heritability of blood pressure: An investigation of 200 pairs of twins using the cold pressor test. Johns Hopkins Med J 136:5764.Google ScholarPubMed
14.Miall, WE, Oldham, PD (1963): The hereditary factor in arterial blood pressure. Br Med J 1:7580.CrossRefGoogle Scholar
15.Page, LB, Damon, A, Moellering, RC 1974: Antecedent of cardiovascular disease in six Solomon Island societies. Circulation 49:11321146.CrossRefGoogle Scholar
16.Rose, RJ, Miller, JZ, Grim, CE, Christian, JC (In press): Aggregation of blood pressure in the families of identical twins. Am J Epidemiol.Google Scholar
17.Zinner, SH, Levy, PS, Kass, EH 1971: Familial aggregation of blood pressure in childhood. N Engl J Med 284:401404.CrossRefGoogle ScholarPubMed
18.Zinner, SH, Martin, LF, Sacls, F, Rosner, B, Kass, EH 1975: A longitudinal study of blood pressure in childhood. Am J Epidemiol 100:437442.CrossRefGoogle ScholarPubMed
You have Access
6
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Glomerular Filtration Rate and Electrolyte Handling in Response to Sodium Loading and Depletion. A Twin Study
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Glomerular Filtration Rate and Electrolyte Handling in Response to Sodium Loading and Depletion. A Twin Study
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Glomerular Filtration Rate and Electrolyte Handling in Response to Sodium Loading and Depletion. A Twin Study
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *