Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-29T06:00:15.130Z Has data issue: false hasContentIssue false

Parts and Wholes: Reduction Allometry and Modularity in Experimental Folsom Points

Published online by Cambridge University Press:  31 August 2021

Michael J. Shott*
Affiliation:
Department of Anthropology, University of Akron, 3 Buchtel Plaza, Akron, OH44325-1910, USA
Erik Otárola-Castillo
Affiliation:
Department of Anthropology, Purdue University, 700 West State Street, Suite 219, West Lafayette, IN47907-2059, USA (eoc@purdue.edu)
*
(shott@uakron.edu, corresponding author)

Abstract

Projectile points are a common subject of archaeological study. In the past decade, landmark-based geometric morphometrics (LGM) has increasingly been used to analyze points as whole objects. LGM and other studies document allometric changes in points—change in shape with change in size—as a product of resharpening. Allometry registers in part because different segments or modules of points are subject to different degrees of resharpening, with blades often experiencing more reduction than stems. Different modules retain varying degrees of morphological integrity as points move through their use lives. Most previous LGM studies involved two-dimensional point models, and few tested directly for modularity. We apply LGM methods to three-dimensional models of Folsom point replicas whose degree and pattern of reduction are known, finding evidence for both allometry and modularity, with modest integration. Complementary non-LGM data reveal similar results, indicating a robust pattern and ways to approximate LGM results in other data. Moreover, our dataset's experimental control clearly identifies the results as a function of the progressive reduction in use experienced by points.

Cabezales líticos son sujetos populares en análises arqueológicos. Recientemente, la geometría morfométrica basada en hitos (LGM en inglés) se ve aumentanda en el análisis de cabezales como objetos enteros. La LGM y otros estudios documentan cambios alométricos —cambio de forma con cambio en tamaño— entre los cabezales como producto de la reactivación. En parte, se registre la alometría porque segmentos distintos, es decir módulos, de los cabezales se sujetan a grados diferentes de la reactivación, los limbos a menudo soportando mas reducción que las pedúnculas. Módulos distintos conservan grados diferentes de la integridad morfológica como pasan los cabezales a lo largo de sus vidas útiles. La mayoría de estudios anteriores de la LGM involucran modelos 2-dimensionales de los cabezales, y pocos investigaron directamente la modularidad. Aplicamos métodos de la LGM a modelos 3-dimensionales de réplicas cabezales del tipo Folsom, entre quienes se conocen grado y patrón de la reactivación. Encontramos prueba de ambas de la alometría y la modularidad, con integración intermedia. Medidas complementarias no-LGM revelan resultados semejantes, indicando un patrón bien fuerte, y tambien maneras a aproximar los datos y resultados de la LGM en otros fuentes o tipos de datos. Más bien, los controles experimentales que residen en nuestros datos identifiquen claramente los resultados como función de la reducción en uso secuencial a que los cabezales se sujetaron.

Type
Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Society for American Archaeology

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

Adams, Dean 2016 Evaluating Modularity in Morphometric Data: Challenges with the RV Coefficient and a New Test Measure. Methods in Ecology & Evolution 7:565572.CrossRefGoogle Scholar
Adams, Dean, and Otárola-Castillo, Erik 2013 geomorph: An R Package for Collection and Analysis of Geometric Morphometric Shape Data. Methods in Ecology & Evolution 4:393399.CrossRefGoogle Scholar
Ahler, Stanley A., Frison, George C., and McGonigal, Michael 2002 Folsom and Other Paleoindian Artifacts in the Missouri River Valley, North Dakota. In Folsom Technology and Lifeways, edited by Clark, John E. and Collins, Michael B., pp. 69112. Lithic Technology Special Publication No. 4. Routledge, New York.Google Scholar
Ahler, Stanley A. and Geib, Phil R. 2000 Why Flute? Folsom Point Design and Adaptation. Journal of Archaeological Science 27:799820.CrossRefGoogle Scholar
Andrefsky, William 1997 Thoughts on Stone Tool Shape and Inferred Function. Journal of Middle Atlantic Archaeology 13:125144.Google Scholar
Andrefsky, William 2006 Experimental and Archaeological Verification of an Index of Retouch for Hafted Bifaces. American Antiquity 71:743757.CrossRefGoogle Scholar
Asher, Brendon P. 2015 From the Continental Divide to the Plains-Woodland Border: Clovis and Folsom/Midland Land Use and Lithic Procurement. PhD dissertation, Department of Anthropology, University of Kansas, Lawrence.Google Scholar
Beck, Charlotte 1995 Functional Attributes and the Differential Persistence of Great Basin Dart Forms. Journal of California and Great Basin Anthropology 17:222243.Google Scholar
Bement, Leland 1999 View from a Kill: The Cooper Site Folsom Lithic Assemblage. In Folsom Lithic Technology: Explorations in Structure and Variation, edited by Amick, Daniel S., pp. 111121. International Monographs in Prehistory. University of Michigan, Ann Arbor.Google Scholar
Bement, Leland 2002 Pickin’ up the Pieces: Folsom Projectile Point Resharpening. In Folsom Technology and Lifeways, edited by Clark, John E. and Collins, Michael B., pp. 135140. Lithic Technology Special Publication No. 4. Routledge, New York.Google Scholar
Binford, Lewis R. 1973 Interassemblage Variability: The Mousterian and the ‘Functional’ Argument. In The Explanation of Culture Change: Models in Prehistory, edited by Renfrew, Colin, pp. 227254. Duckworth, London.Google Scholar
Blades, Brook S. 2003 End Scraper Reduction and Hunter-Gatherer Mobility. American Antiquity 68:141156.CrossRefGoogle Scholar
Bookstein, Fred L. 1991 Morphometric Tools for Landmark Data: Geometry and Biology. Cambridge University Press, Cambridge.Google Scholar
Buchanan, Briggs 2006 Analysis of Folsom Projectile Point Resharpening Using Quantitative Comparisons of Form and Allometry. Journal of Archaeological Science 33:185199.CrossRefGoogle Scholar
Buchanan, Briggs, J., and Collard, Mark 2010 A Geometric Morphometrics-Based Assessment of Blade Shape Differences among Paleoindian Projectile Point Types from Western North America. Journal of Archaeological Science 37:350359.CrossRefGoogle Scholar
Buchanan, Briggs, David Kilby, J., Huckell, Bruce B., Michael J. O'Brien, and Mark Collard 2015 Size, Shape, Scars, and Spatial Patterning: A Quantitative Assessment of Late Pleistocene (Clovis) Point Resharpening. Journal of Archaeological Science: Reports 3:1121.Google Scholar
Charlin, Judith, and Cardillo, Marcelo 2018 Reduction Constraints and Shape Convergence along Tool Ontogenetic Trajectories: An Example from Late Holocene Projectile Points of Southern Patagonia. In Convergent Evolution and Stone-Tool Technology, edited by Buchanan, Briggs, Eren, Metin, and O'Brien, Michael J., pp. 109129. MIT Press, London.Google Scholar
Charlin, Judith, and Rolando González-José, 2018 Testing an Ethnographic Analogy through Geometric Morphometrics: A Comparison between Ethnographic Arrows and Archaeological Projectile Points from Late Holocene Fuego-Patagonia. Journal of Anthropological Archaeology 51:159172.CrossRefGoogle Scholar
Collins, Michael B. 1999 Clovis and Folsom Lithic Technology on and Near the Southern Plains: Similar Ends, Different Means. In Folsom Lithic Technology: Explorations in Structure and Variation, edited by Amick, Daniel S., pp. 1238. International Monographs in Prehistory. University of Michigan, Ann Arbor.Google Scholar
de Azevedo, Soledad, Charlin, Judith, and González-José, Rolando 2014 Identifying Design and Reduction Effects on Lithic Projectile Point Shapes. Journal of Archaeological Science 41:297307.CrossRefGoogle Scholar
Dibble, Harold 1987 The Interpretation of Middle Paleolithic Scraper Morphology. American Antiquity 52:109117.CrossRefGoogle Scholar
Dines, James P., Erik, Otárola-Castillo, Ralph, Peter, Alas, Jesse, Daley, Timothy, Smith, Andrew D., and Dean, Matthew D. 2014 Sexual Selection Targets Cetacean Pelvic Bones. Evolution 68:32963306.CrossRefGoogle ScholarPubMed
Douglass, Matthew J., Lin, Sam C., Braun, David R., and Plummer, Thomas W. 2018 Core Use-Life Distributions in Lithic Assemblages as a Means for Reconstructing Behavioral Patterns. Journal of Archaeological Method and Theory 25:254288.CrossRefGoogle Scholar
Ellis, Christopher 2004 Understanding “Clovis” Fluted Point Variability in the Northeast: A Perspective from the Debert Site. Canadian Journal of Archaeology 28:205253.Google Scholar
Flegenheimer, Nora, and Weitzel, Celeste 2017 Fishtail Points from the Pampas of South America: Their Variability and Life Histories. Journal of Anthropological Archaeology 45:142156.CrossRefGoogle Scholar
Frison, George C. 1968 A Functional Analysis of Certain Chipped Stone Tools. American Antiquity 33:149155.CrossRefGoogle Scholar
Goldstein, Stephen 2014 Quantifying Endscraper Reduction in the Context of Obsidian Exchange among Early Pastoralists in Southwestern Kenya. Lithic Technology 39:319.CrossRefGoogle Scholar
González-José, Rolando, and Charlin, Judith 2012 Relative Importance of Modularity and Other Morphological Attributes on Different Types of Lithic Point Weapons: Assessing Functional Variation. PLoS ONE 7(10):e48009.CrossRefGoogle Scholar
Goodyear, Albert C. 1974 The Brand Site: A Techno-Functional Study of a Dalton Site in Northeast Arkansas. Research Series No. 7. Arkansas Archeological Survey, Fayetteville.Google Scholar
Hashizume, Jun 2009 Paleoindian Projectile Point Breakage and Reshaping. In Hell Gap: A Stratified Paleoindian Campsite at the Edge of the Rockies, edited by Larson, Mary Lou, Kornfeld, Marcel, and Frison, George C., pp. 274284. University of Utah Press, Salt Lake City.Google Scholar
Hayden, Brian 1977 Stone Tool Functions in the Western Desert. In Stone Tools as Cultural Markers, edited by Wright, R. V. S., pp. 178188. Australian Institute of Aboriginal Studies, Canberra.Google Scholar
Hermo, Darío, Terrannova, Enrique, and Miotti, Laura 2015 Tecnología y uso de materias primas en puntas cola de pescado de la Meseta de Somuncará (Provincia de Rio Negro, Argentina). Chungara 47:101115.Google Scholar
Hiscock, Peter, and Attenbrow, Val 2005 Australia's Eastern Regional Sequence Revisited: Technology and Change at Capertee 3. BAR International Series 1397. British Archaeological Reports, Oxford.CrossRefGoogle Scholar
Hoffman, C. Marshall 1985 Projectile Point Maintenance and Typology: Assessment with Factor Analysis and Canonical Correlation. In Concordance in Archaeological Analysis: Bridging Data Structure, Quantitative Technique, and Theory, edited by Carr, Christopher, pp. 566611. Westport Press, Kansas City.Google Scholar
Hofman, Jack L. 1992 Recognition and Interpretation of Folsom Technological Variability on the Southern Plains. In Ice Age Hunters of the Rockies, edited by Stanford, Dennis J. and Day, Jane S., pp. 193224. University Press of Colorado, Boulder.Google Scholar
Hunzicker, David A. 2005 Folsom Hafting Technology: An Experimental Archaeological Investigation into the Design, Effectiveness, Efficiency and Interpretation of Prehistoric Weaponry. Master's thesis, Department of Museum and Field Studies, University of Colorado, Boulder.Google Scholar
Hunzicker, David A. 2008 Folsom Projectile Technology: An Experiment in Design, Effectiveness, and Efficiency. Plains Anthropologist 53:291311.CrossRefGoogle Scholar
Institute for Data Analysis and Visualization (IDAV) 2007 Landmark User Guide 3.6. IDAV, University of California, Davis.Google Scholar
Iovita, Radu 2010 Comparing Stone Tool Resharpening Trajectories with the Aid of Elliptical Fourier Methods. In New Perspectives on Old Stones: Analytical Approaches to Paleolithic Technologies, edited by Lycett, Stephen and Chauhan, Parth, pp. 235253. Springer, New York.CrossRefGoogle Scholar
Iovita, Radu 2011 Shape Variation in Aterian Tanged Tools and the Origins of Projectile Technology: A Morphometric Perspective on Stone Tool Function. PLoS ONE 6(12):e29029.CrossRefGoogle ScholarPubMed
Iovita, Radu, and McPherron, Shannon P. 2011 The Handaxe Reloaded: A Morphometric Reassessment of Acheulian and Middle Paleolithic Handaxes. Journal of Human Evolution 61:6174.CrossRefGoogle ScholarPubMed
Iriarte, José 1995 Afinando la puntería: Tamaño, forma y rejuvenecimiento en las puntas de proyectil pedúnculadas del Uruguay. In Arqueología en Uruguay: 120 años despues, edited by Consens, Mario, Mazz, José Maria López, and Curbelo, Maria del Carmen, pp. 142151. VIII Congreso de Arqueología Nacional Uruguaya, Montevideo, Uruguay.Google Scholar
Justice, Noel D. 2002 Stone Age Spear and Arrow Points of the Southwestern United States. Indiana University Press, Bloomington.Google Scholar
Klingenberg, Christian P. 2008 Morphological Integration and Developmental Modularity. Annual Review of Ecology, Evolution and Systematics 39:115132.CrossRefGoogle Scholar
Lassen, Robert D. 2016 The Spectrum of Variation in Folsom-Era Projectile Point Technology. Paleoamerica 2:150158.CrossRefGoogle Scholar
Lerner, Harry 2015 Dynamic Variables and the Use-Related Reduction of Southern Huron Projectile Points. In Works in Stone: Contemporary Perspectives on Lithic Analysis, edited by Shott, Michael, pp. 143161. University of Utah Press, Salt Lake City.Google Scholar
LeTorneau, Philippe D., and Baker, Tony 2002 The Role of Obsidian in Folsom Lithic Technology. In Folsom Technology and Lifeways, edited by Clark, John E. and Collins, Michael B., pp. 3145. Lithic Technology Special Publication No. 4. Routledge, New York.Google Scholar
Li, Hau, Kuman, Kathleen, and Li, Chaorong 2015 Quantifying the Reduction Intensity of Handaxes with 3D Technology: A Pilot Study on Handaxes in the Danjiangkou Reservoir Region, Central China. PLoS ONE 10(9):e0135613.CrossRefGoogle Scholar
Loendorf, Chris, Rogers, Thatcher, Oliver, Theodore J., Huttick, Brian R., Denoyer, Allen, and Kyle Woodson, M. 2019 Projectile Point Reworking: An Experimental Study of Arrowpoint Use Life. American Antiquity 84:353365.10.1017/aaq.2018.87CrossRefGoogle Scholar
Loyola, Rodrigo, Núñez, Lautaro, Aschero, Carlos, and Cartajena, Isabel 2017 Tecnología lítica del Pleistoceno final y la colonización del Salar de Punta Negra (24,5° S), Desierto de Atacama. Estudios Atacameños 55:534.Google Scholar
MacLeod, Norman 2019 The Quantitative Assessment of Archaeological Artifact Groups: Beyond Geometric Morphometrics. Quaternary Science Reviews 201:319348.CrossRefGoogle Scholar
Meltzer, David J. 2006 Folsom: New Archaeological Investigations of a Classic Paleoindian Bison Kill. University of California Press, Berkeley.CrossRefGoogle Scholar
Miller, D. Shane 2018 From Colonization to Domestication: Population, Environment, and the Origins of Agriculture in Eastern North America. University of Utah Press, Salt Lake City.Google Scholar
Mitteroecker, Philip, Gunz, P., Bernhard, M., Schaefer, K., and Bookstein, Fred L. 2004 Comparison of Cranial Ontogenetic Trajectories among Great Apes and Humans. Journal of Human Evolution 46:679698.CrossRefGoogle ScholarPubMed
Morales, Juan I. 2016 Distribution Patterns of Stone-Tool Reduction: Establishing Frames of Reference to Approximate Occupational Features and Formation Processes in Paleolithic Societies. Journal of Anthropological Archaeology 41:231245.CrossRefGoogle Scholar
Odell, George H., and Cowan, Frank 1986 Experiments with Spears and Arrows on Animal Targets. Journal of Field Archaeology 13:195212.Google Scholar
Otárola-Castillo, Erik, Torquato, Melissa G., Hawkins, Hannah C., James, Emma, Harris, Jacob A., Marean, Curtis W., McPherron, Shannon P., and Thompson, Jessica C. 2018 Differentiating between Cutting Actions on Bone Using 3D Geometric Morphometrics and Bayesian Analyses with Implications to Human Evolution. Journal of Archaeological Science 89:5667.CrossRefGoogle Scholar
Oxnard, Charles E. 1978 One Biologist's View of Morphometrics. Annual Review of Ecology and Systematics 9:219241.CrossRefGoogle Scholar
Patten, Bob 2005 Peoples of the Flute: A Study in Anthropolithic Forensics. Stone Dagger Press, Denver.Google Scholar
Peterson, Robert R. 1978 Projectile Point Re-Utilization Patterns at the Agate Basin Site. Wyoming Contributions to Anthropology 1:139147.Google Scholar
Prentiss, Anna M., Walsh, Matthew J., Skelton, Randall R., and Markes, Matt 2016 Mosaic Evolution in Cultural Frameworks: Skateboard Decks and Projectile Points. In Cultural Phylogenetics: Concepts and Applications, edited by M.Straffen, Larissa, pp. 113130. Springer, Basel, Switzerland.CrossRefGoogle Scholar
Presnyakova, Darya, Braun, David R., Conard, Nicholas J., Feibel, Craig, Harris, John W., Pop, Cornel M., Schlager, Stefan, and Archer, Will 2018 Site Fragmentation, Hominin Mobility and LCT Variability Reflected in the Early Acheulean Record of the Okote Member, at Koobi Fora, Kenya. Journal of Human Evolution 125:159180.CrossRefGoogle ScholarPubMed
Quinn, Colin P., Andrefsky, William, Kuijt, Ian, and Finlayson, Bill 2008 Perforation with Stone Tools and Retouch Intensity: A Neolithic Case Study. In Lithic Technology: Measures of Production, Use, and Curation, edited by Andrefsky, William, pp. 150174. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Rohlf, F. James, and Corti, Marco 2000 The Use of Partial Least-Squares to Study Covariation in Shape. Systematic Biology 49:740753.CrossRefGoogle ScholarPubMed
Sahle, Yonatan, and Negash, Agazi 2016 An Ethnographic Experiment of Endscraper Curation Rate among Hadiya Hideworkers, Ethiopia. Lithic Technology 40.Google Scholar
Sahnouni, Mohamed, Schick, Kathy, and Toth, Nicholas 1997 An Experimental Investigation into the Nature of Faceted Limestone “Spheroids” in the Early Palaeolithic. Journal of Archaeological Science 24:701713.CrossRefGoogle Scholar
Sellet, Frédéric 2017 My Flute Is Bigger than Yours: Nature and Causes of Technological Changes on the American Great Plains at the End of the Pleistocene. In Lithic Technological Organization and Paleoenvironmental Change: Global and Diachronic Persectives, edited by Robinson, Erich and Sellet, Frédéric, pp. 263269. Springer, Cham, Switzerland.Google Scholar
Serwatka, K. 2015 Bifaces in Plain Sight: Testing Elliptical Fourier Analysis in Identifying Reduction Effects on Late Middle Palaeolithic Bifacial Tools. Litikum 3:1325.CrossRefGoogle Scholar
Shott, Michael J. 1996 An Exegesis of the Curation Concept. Journal of Anthropological Research 52:259280.CrossRefGoogle Scholar
Shott, Michael J. 2005 The Reduction Thesis and Its Discontents: Review of Australian Approaches. In Lithics 'Down Under’: Australian Perspectives on Lithic Reduction, Use and Classification, edited by Clarkson, Christopher and Lamb, Lara, pp. 109125. BAR International Series 1408. British Archaeological Reports, Oxford.Google Scholar
Shott, Michael J. 2014 Digitising Archaeology: A Subtle Revolution in Analysis. World Archaeology 46:19.CrossRefGoogle Scholar
Shott, Michael J. 2016 Survivorship Distributions in Experimental Spear Points: Implications for Tool Design and Assemblage Formation. In Multidisciplinary Approaches to the Study of Stone Age Weaponry, edited by Iovita, Radu and Sano, Katsuhiro, pp. 245258. Springer, Dordrecht, Netherlands.CrossRefGoogle Scholar
Shott, Michael J. 2020 Allometry and Resharpening in Experimental Folsom-Point Replicas: Analysis Using Inter-Landmark Distances. Journal of Archaeological Method and Theory 27:360380.CrossRefGoogle Scholar
Shott, Michael J., and Ballenger, Jesse 2007 Biface Reduction and the Measurement of Dalton Curation: A Southeastern Case Study. American Antiquity 72:153175.CrossRefGoogle Scholar
Shott, Michael J., Hunzicker, David A., and Patten, Bob 2007 Patterns and Allometric Measurement of Reduction in Experimental Folsom Bifaces. Lithic Technology 32:203217.Google Scholar
Shott, Michael J., and Seeman, Mark F. 2017 Use and Multifactorial Reconciliation of Uniface Reduction Measures: A Pilot Study at the Nobles Pond Paleoindian Site. American Antiquity 82:723741.CrossRefGoogle Scholar
Shott, Michael J., and Sillitoe, Paul 2005 Use Life and Curation in New Guinea Experimental Used Flakes. Journal of Archaeological Science 32:653663.CrossRefGoogle Scholar
Shott, Michael J. and Weedman, Kathryn J. 2007 Measuring Reduction in Stone Tools: An Ethnoarchaeological Study of Gamo Hidescraper Blades from Ethiopia. Journal of Archaeological Science 34:10161035.CrossRefGoogle Scholar
Skinner, Sarah M. 2018 A Geometric Morphometric Analysis of Projectile Point Maintenance Using Experimental Resharpening Techniques: An Examination of PFP1 Curation, Cooper's Ferry Site, Idaho. Master's thesis, Department of Anthropology, Oregon State University, Corvallis.Google Scholar
Smallwood, Ashley M., Jennings, Thomas A., and Pevny, Charlotte D. 2018 Expressions of Ritual in the Paleoindian Record of the Eastern Woodlands: Exploring the Uniqueness of the Dalton Cemetery at Sloan, Arkansas. Journal of Anthropological Archaeology 49:184198.CrossRefGoogle Scholar
Suárez, Rafael 2011 Arqueología durante la Transición Pleistoceno-Holoceno en Uruguay: Componentes Paleoindios, Organización de la Tecnología Lítica, y Movilidad de los Primeros Americanos. BAR International Series 2220. British Archaeological Report, Oxford.Google Scholar
Suárez, Rafael 2017 The Peopling of Southeastern South America: Cultural Diversity, Paleoenvironmental Conditions, and Lithic Technological Organization during the Late Pleistocene and Early Holocene. In Lithic Technological Organization and Paleoenvironmental Change: Global and Diachronic Perspectives, edited by Robinson, Erich and Sellet, Frédéric, pp. 281300. Springer, Cham, Switzerland.Google Scholar
Surovell, Todd A. 2009 Toward a Behavioral Ecology of Lithic Technology: Cases from Paleoindian Archaeology. University of Arizona Press, Tucson.Google Scholar
Tindale, Norman 1965 Stone Implement Making among the Nakako, Ngadadjara and Pitjandjara of the Great Western Desert. Records of the South Australian Museum 15:131164.Google Scholar
Titmus, Gene L., and Woods, James C. 1991 Fluted Points from the Snake River Plain. In Clovis: Origins and Adaptations, edited by Bonnichsen, Robsen and Turnmire, Karen, pp. 119131. Oregon State University Press, Corvallis.Google Scholar
Weedman, Kathryn J. 2000 An Ethnoarchaeological Study of Stone Scrapers among the Gamo People of Southern Ethiopia. PhD dissertation, Department of Anthropology, University of Florida, Gainesville.Google Scholar
Wheat, Joe Ben 1975 Artifact Life Histories: Cultural Templates, Typology, Evidence and Inference. In Primitive Art and Technology, edited by Raymond, J., Loveseth, B., Arnold, C., and Reardon, G., pp. 715. University of Calgary Department of Archaeology, Calgary.Google Scholar
Wilmsen, Edwin N., and Roberts, Frank H. H. 1978 Lindenmeier, 1934–1974: Concluding Report on Investigations. Contributions to Anthropology No. 24. Smithsonian Institution, Washington, DC.Google Scholar