We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
NASA is conducting investigations in Advanced Air Mobility (AAM) aircraft and operations. AAM missions are characterised by ranges below 300 nm, including rural and urban operations, passenger carrying as well as cargo delivery. Urban Air Mobility (UAM) is a subset of AAM and is the segment that is projected to have the most economic benefit and be the most difficult to develop. The NASA Revolutionary Vertical Lift Technology project is developing UAM VTOL aircraft designs that can be used to focus and guide research activities in support of aircraft development for emerging aviation markets. These NASA concept vehicles encompass relevant UAM features and technologies, including propulsion architectures, highly efficient yet quiet rotors, and aircraft aerodynamic performance and interactions. The configurations adopted are generic, intentionally different in appearance and design detail from prominent industry arrangements. Already these UAM concept aircraft have been used in numerous engineering investigations, including work on meeting safety requirements, achieving good handling qualities, and reducing noise below helicopter certification levels. Focusing on the concept vehicles, observations are made regarding the engineering of Advanced Air Mobility aircraft.
Fibre-reinforced polymer (FRP) composites generally have a layered architecture and are commonly manufactured with thermosetting resins—making them susceptible to interlaminar fracture (i.e. delamination), which is often a major concern in structurally critical applications. As a result, various approaches have been explored to enhance interlaminar fracture resistance. This review focuses on third-phase toughener inclusions, which offer opportunities to create damage resistant and damage tolerant structures without significantly adding weight or reducing in-plane mechanical properties. These toughener inclusions, typically introduced in the interlaminar regions, are divided into two categories herein: particle fillers and non-woven fibre veils. The advantages and limitations of both types are discussed, and the potential of the two approaches is evaluated using published data, aiming to provide an overview of the current understanding and challenges in designing and manufacturing safe and reliable composite structures.
This study is focused on the development of longitudinal aerodynamic models for steady flight conditions. While several commercial solvers are available for this type of work, we seek to evaluate the accuracy of an open source software. This study aims to verify and demonstrate the accuracy of the OpenFoam solver when it is used on basic computers (32–64GB of RAM and eight cores). A new methodology was developed to show how an aerodynamic model of an aircraft could be designed using OpenFoam software. The mesh and the simulations were designed only using OpenFoam utilities, such as blockMesh, snappyHexMesh, simpleFoam and rhoSimpleFoam. For the methodology illustration, the process was applied to the Bombardier CRJ700 aircraft and simulations were performed for its flight envelope, up to M0.79. Forces and moments obtained with the OpenFoam model were compared with an accurate flight data source (level D flight simulator). Excellent results in data agreement were obtained with a maximum absolute error of 0.0026 for the drag coefficient, thus validating a high-fidelity aerodynamic model for the Bombardier CRJ-700 aircraft.
The German research Cluster of Excellence SE2A (Sustainable and Energy Efficient Aviation) is investigating different technologies to be implemented in the following decades, to achieve more efficient air transportation. This paper studies the Hybrid Laminar Flow Control (HLFC) using boundary layer suction for drag reduction, combined with other technologies for load and structural weight reduction and a novel full-electric propulsion system. A multidisciplinary design optimisation framework is presented, enabling physics-based analysis and optimisation of a fully electric aircraft wing equipped with HLFC technologies and load alleviation, and new structures and materials. The main focus is on simulation and optimisation of the boundary layer suction and its influence on wing design and optimisation. A quasi three-dimensional aerodynamic analysis is used for drag estimation of the wing. The tool executes the aerofoil analysis using XFOILSUC, which provides accurate drag estimation through boundary layer suction. The optimisation is based on a genetic algorithm for maximum take-off weight (MTOW) minimisation. The optimisation results show that the active flow control applied on the optimised geometry results in more than 45% reduction in aircraft drag coefficient, compared to the same geometry without HLFC technology. The power absorbed for the HLFC suction system implies a battery mass variation lower than 2%, considering the designed range as top-level requirement (TLR).
Real-time flight data from the Automatic Dependent Surveillance–Broadcast (ADS-B) has been integrated, through a data interface, with a flight performance computer program to predict aviation emissions at altitude. The ADS-B, along with data from Mode-S, are then used to ‘fly’ selected long-range aircraft models (Airbus A380-841, A330-343 and A350-900) and one turboprop (ATR72). Over 2,500 flight trajectories have been processed to demonstrate the integration between databases and software systems. Emissions are calculated for altitudes greater than 3,000 feet (609m) and exclude landing and take-off cycles. This proof of concept fills a gap in the aviation emissions inventories, since it uses real-time flights and produces estimates at a very granular level. It can be used to analyse emissions of gases such as carbon dioxide ($\mathrm{CO}_2$), carbon monoxide (CO), nitrogen oxides ($\mathrm{NO}_x$) and water vapour on a specific route (city pair), for a specific aircraft, for an entire fleet, or on a seasonal basis. It is shown how $\mathrm{NO}_x$ and water vapour emissions concentrate around tropospheric altitudes only for long-range flights, and that the cruise range is the biggest discriminator in the absolute value of these and other exhaust emissions.
The electrification of the commuter aircraft is instrumental in the development of novel propulsion systems. The scope of this work aims to explore the design space of a parallel hybrid-electric configuration with an entry into service date of 2030 and beyond and determine the impact of other disciplines on conceptual design, such as components positioning, aircraft stability and structural integrity. Three levels of conceptual sizing are applied and linked with a parametric aircraft geometry tool, to generate the aircraft’s geometry and position the components. Subsequently, the structural optimisation of the wing box is performed, providing the centre of gravity of the components placed inside the wing, that minimise the induced stresses. Furthermore, the stability and trim analysis follow, with the former being highly affected by the positioning of components. Results are compared to a similar aircraft with entry into service technology of 2014 and it is indicated that in terms of block fuel reduction the total electrification benefit increases with the increase of degree of hybridisation, if aircraft mass is kept constant. On the other hand, if battery specific energy is kept constant, similar block fuel reduction is possible with lower hybridisation degrees. The potential for improvement in terms of carbon dioxide emissions and block fuel reduction ranges from 15.73% to 21.44% compared to the conventional aircraft, for levels of battery specific energy of 0.92 and 1.14 kWh/kg respectively. Finally, the component positioning evaluation indicates a maximum weight limitation of 240 kg for the addition of an aft boundary layer ingestion fan to a tube and wing aircraft configuration, without compromising the aircraft static stability.
This work presents the Topology Optimisation of the Morphing Variable Span of Tapered Wing (MVSTW) using a finite element method. This topology optimisation aims to assess the feasibility of internal wing components such as ribs, spars and other structural components. This innovative approach is proposed for the telescopic mechanism of the MVSTW, which includes the sliding of the telescopically extended wing into the fixed wing segment. The optimisation is performed using the tools within ANSYS Mechanical, which allows the solving of topology optimisation problems. This study aims to minimise overall structural compliance and maximise stiffness to enhance structural performance, and thus to meet the structural integrity requirements of the MVSTW. The study evaluates the maximum displacements, stress and strain parameters of the optimised variable span morphing wing in comparison with those of the original wing. The optimised wing analyses are conducted on four wingspan extensions, that is, 0%, 25%, 50% and 75%, of the original wingspan, and for different flight speeds to include all flight phases (17, 34, 51 and 68m/s, respectively). Topology optimisation is carried out on the solid wing built with aluminium alloy 2024-T3 to distribute the wing components within the fixed and moving segments. The results show that the fixed and moving wing segments must be designed with two spar configurations, and seven ribs with their support elements in the high-strain area. The fixed and moving wing segments’ structural weight values were reduced to 16.3 and 10.3kg from 112 to 45kg, respectively. The optimised MVSTW was tested using different mechanical parameters such as strains, displacements and von Misses stresses. The results obtained from the optimised variable span morphing wing show the optimal mechanical behaviour and the structural wing integrity needed to achieve the multi-flight missions.
An unusual philosophical approach is proposed here to decarbonise larger civil aircraft that fly long ranges and consume a large fraction of civil aviation fuel. These inject an important amount of carbon emissions into the atmosphere, and holistic decarbonising solutions must consider this sector. A philosophical–analytical investigation is reported here on the feasibility of an airliner family to fly over long ranges and assist in the elimination of carbon dioxide emissions from civil aviation.
Backed by state-of-the-art correlations and engine performance integration analytical tools, a family of large airliners is proposed based on the development and integration of the body of a very large two-deck four-engine airliner with the engines, wings and flight control surfaces of a very long-range twin widebody jet. The proposal is for a derivative design and not a retrofit. This derivative design may enable a swifter entry to service.
The main contribution of this study is a philosophical one: a carefully evaluated aircraft family that appears to have very good potential for first-generation hydrogen-fuelled airliners using gas turbine engines for propulsion. This family offers three variants: a 380-passenger aircraft with a range of 3,300nm, a 330-passenger aircraft with a range of 4,800nm and a 230-passenger aircraft with a range of 5,500nm. The latter range is crucially important because it permits travel from anywhere in the globe to anywhere else with only one stop. The jet engine of choice is a 450kN high-bypass turbofan.
Recently, transformable Unmanned Aerial Vehicles (UAVs) have become a subject of great interest in the field of flying systems, due to their maneuverability, agility and morphological capacities. They can be used for specific missions and in more congested spaces. Moreover, this novel class of UAVs is considered as a viable solution for providing flying robots with specific and versatile functionalities. In this paper, we propose (i) a new design of a transformable quadrotor with (ii) generic modeling and (iii) adaptive control strategy. The proposed UAV is able to change its flight configuration by rotating its four arms independently around a central body, thanks to its adaptive geometry. To simplify and lighten the prototype, a simple mechanism with a light mechanical structure is proposed. Since the Center of Gravity (CoG) of the UAV moves according to the desired morphology of the system, a variation of the inertia and the allocation matrix occurs instantly. These dynamics parameters play an important role in the system control and its stability, representing a key difference compared with the classic quadrotor. Thus, a new generic model is developed, taking into account all these variations together with aerodynamic effects. To validate this model and ensure the stability of the designed UAV, an adaptive backstepping control strategy based on the change in the flight configuration is applied. MATLAB simulations are provided to evaluate and illustrate the performance and efficiency of the proposed controller. Finally, some experimental tests are presented.