Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-25T09:40:05.174Z Has data issue: false hasContentIssue false

Prediction of departure flight delays through the use of predictive tools based on machine learning/deep learning algorithms

Published online by Cambridge University Press:  19 May 2023

J.G. Muros Anguita
Affiliation:
Escuela Internacional de Postgrado, Universidad de Granada, Granada, Spain
O. Díaz Olariaga*
Affiliation:
Facultad de Ingeniería Civil, Universidad Santo Tomás, Bogota, Colombia
*
Corresponding author: O. Díaz Olariaga; Email: oscardiazolariaga@usta.edu.co

Abstract

The objective of this research is to predict the delays in the departure of scheduled commercial flights through a methodology that uses predictive tools based on machine learning/deep learning (ML/DL), with supervised training in regression, based on the available flight datasets. Since the novel contribution of this work is, first, to make the comparison of the predictions in terms of means and statistical variance of the different ML/DL models implemented and, second, to determine the coefficients of the importance of the features or flight attributes, using ML methods known as permutation importance, it is possible to rank the importance of flight attributes by their influence in determining the delay time and reduce the problem of selecting the most important flight attributes. From the results obtained, it is worth mentioning that the model that presents the best performance is the ensemble or combinatorial method of random forest regressor models, with an acceptable prediction range (measured with the root-mean-square-error).

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Royal Aeronautical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

ICAO. Presentation of 2019 Air Transport Statistical Results, ICAO, 2019, Montreal.Google Scholar
IATA. World Air Transport Statistics, IATA, 2021, Geneva.Google Scholar
Graham, A. and Morrell, P. Airport Finance and Investment in the Global Economy, Routledge, 2017, London.Google Scholar
de Neufville, R. and Odoni, A. Airport Systems, Planning, Design, and Management, McGraw-Hill, 2013, New York.Google Scholar
Horonjeff, R., McKelvey, F., Sproule, W. and Young, S. Planning and Design of Airports, McGraw-Hill, 2010, New York.Google Scholar
Ashford, N., Mumayiz, S. and Wright, P. Airport Engineering, John Wiley, 2011, New Jersey.CrossRefGoogle Scholar
ACRP. Defining and Measuring Aircraft Delay and Airport Capacity Thresholds. ACRP Report 104, Transportation Research Board, 2014, Washington, D.C.Google Scholar
Gelhausen, M., Berster, P. and Wilken, D. Airport Capacity Constraints and Strategies for Mitigation, Academic Press, 2020, London.Google Scholar
Janic, M. Airport Analysis, Planning and Design: Demand, Capacity and Congestion, Nova Science Publishers, 2009, New York.Google Scholar
Borsky, S. and Unterberger, C. Bad weather and flight delays: The impact of sudden and slow onset weather events, Econ. Transp., 2019, 18, pp 1026. DOI: 10.1016/j.ecotra.2019.02.002 CrossRefGoogle Scholar
University of Westminster. European Airline Delay Cost Reference Values, University of Westminster, 2015, London.Google Scholar
Peterson, E., Neels, K., Barczi, N. and Graham, T. The economic cost of airline flight delay, J. Transport Econ. Policy, 2013, 47, (1), pp 107121.Google Scholar
NEXTOR. Total Delay Impact Study, National Center of Excellence for Aviation Operations Research (Federal Aviation Administration), Washington D.C., 2010.Google Scholar
Cook, A., Tanner, G., Jovanović, R. and Lawes, A. The cost of delay to air transport in Europe - Quantification and management, 13th Air Transport Research Society World Conference, June 27–30, Abu Dhabi, 2009.Google Scholar
BTS. Bureau of Transportation Statistic (U.S. Department of Transportation), 2021. https://www.transtats.bts.gov/HomeDrillChart.asp Google Scholar
EUROCONTROL. CODA Digest. All-causes delay and cancellations to air transport in Europe, EUROCONTROL, Brussels, 2020.Google Scholar
FAA. Cost of Delay Estimates. FAA APO-100, Federal Aviation Administration, 2020, Washington D.C. Google Scholar
IATA. Inefficiency in European Airspace, IATA, 2013, Geneva.Google Scholar
Altmann, A., Tolosi, L., Sander, O. and Lengauer, T. Permutation importance: A corrected feature importance measure, Bioinformatics, 2010, 26, (10), pp 13401347. DOI: 10.1093/bioinformatics/btq134 Google ScholarPubMed
Breiman, L. Random forests, Mach. Learn., 2001, 45, pp 532.CrossRefGoogle Scholar
Tan, X., Jia, X., Yan, J., Wang, K. and Bian, L. An exploratory analysis of flight delay propagation in China, J. Air Transport Manag., 2021, 92, 102025. DOI: 10.1016/j.jairtraman.2021.102025 Google Scholar
Kim, M. and Park, S. Airport and route classification by modelling flight delay propagation, J. Air Transport Manag., 2021, 93, 102045. DOI: 10.1016/j.jairtraman.2021.102045 CrossRefGoogle Scholar
Kafle, N. and Zou, B. Modeling flight delay propagation: A new analytical-econometric approach, Transp. Res. Part B, 2016, 93, pp 520542. DOI: 10.1016/j.trb.2016.08.012 CrossRefGoogle Scholar
Fleurquin, P., Ramasco, J. and Eguiluz, V. Systemic delay propagation in the US airport network, Sci. Rep., 2013, 3, pp 16. DOI: 10.1038/srep01159 CrossRefGoogle ScholarPubMed
Cai, Q., Alam, S. and Doung, V. A spatial–temporal network perspective for the propagation dynamics of air traffic delays, Engineering, 2021, 7, pp 452464. DOI: 10.1016/j.eng.2020.05.027 CrossRefGoogle Scholar
Zhang, M., Zhou, X., Zhang, Y., Sun, L., Dun, M., Du, W. and Cao, X. Propagation index on airport delays, Transp. Res. Record, 2019, 2673, (8), pp 536543. DOI: 10.1177/0361198119844240 CrossRefGoogle Scholar
Wang, P., Schaefer, L. and Wojcik, L. Flight connections and their impacts on delay propagation, Digital Avionics Systems Conference, 12–16 October 2003, Indianapolis (USA).CrossRefGoogle Scholar
Markovic, D., Hauf, T., Roehner, P. and Spehr, U. A statistical study of the weather impact on punctuality at Frankfurt airport, Meteorol. Appl., 2008, 15, (2), pp 293303.CrossRefGoogle Scholar
Xu, N., Sherry, L. and Laskey, K. Multifactor model for predicting delays at U.S. airports, Transp. Res. Record, 2008, 2052, pp 6271. DOI: 10.3141/2052-08 CrossRefGoogle Scholar
Zhang, J., Xu, X. and Wang, F. Airport delay performance evaluation based on fuzzy linear regression model, J. Traffic Transp. Eng., 2010, 10, (4), pp 109114.Google Scholar
Hao, L., Hansen, M., Zhang, Y. and Post, J. New York, New York: Two ways of estimating the delay impact of New York airports, Transp. Res. Part E, 2014, 70, pp 245260. DOI: 10.1016/j.tre.2014.07.004 CrossRefGoogle Scholar
Boswell, S. and Evans, J. Analysis of downstream impacts of air traffic delay. Project Report, Lincoln Laboratory, Massachusetts Institute of Technology, 1997.Google Scholar
Wong, J. and Tsai, S. A survival model for flight delay propagation, J. Air Transport Manag., 2012, 23, pp 511. DOI: 10.1016/j.jairtraman.2012.01.016 CrossRefGoogle Scholar
Wu, C. Inherent delays and operational reliability of airline schedules, J. Air Transport Manag., 2005, 11, (4), pp 273282. DOI: 10.1016/j.jairtraman.2005.01.005 Google Scholar
Baspinar, B. and Koyuncu, E. A data-driven air transportation delay propagation model using epidemic process models, Int. J. Aerospace Eng., 2016, Article ID 4836260. DOI: 10.1155/2016/4836260.CrossRefGoogle Scholar
Pyrgiotis, N., Malone, K. and Odoni, A. Modelling delay propagation within an airport network, Transp. Res. Part C, 2013, 27, pp 6075. DOI: 10.1016/j.trc.2011.05.017 CrossRefGoogle Scholar
Hansen, M. Micro-level analysis of airport delay externalities using deterministic queuing models: A case study, J. Air Transport Manag., 2002, 8, (2), pp 7387. DOI: 10.1016/S0969-6997(01)00045-X CrossRefGoogle Scholar
Morrison, S. and Winston, C. The effect of FAA expenditures on air travel delays, J. Urban Econ., 2008, 63, (2), pp 669678.Google Scholar
Zou, B. and Hansen, M. Flight delays, capacity investment and social welfare under air transport supply-demand equilibrium, Transp. Res. Part A, 2012, 46, (6), pp 965980. DOI: 10.1016/j.tra.2012.02.015 Google Scholar
Qin, Q. and Yu, H. A statistical analysis on the periodicity of flight delay rate of the airports in the US, Adv. Transp. Stud., 2014, 3, pp 93104.Google Scholar
Pathomsiri, S., Haghani, A., Dresner, M. and Windle, R. Impact of undesirable outputs on the productivity of US airports, Transp. Res. Part E, 2008, 44, (2), pp 235259. DOI: 10.1016/j.tre.2007.07.002 CrossRefGoogle Scholar
Kotegawa, T., De Laurentis, D., Noonan, K. and Post, J. Impact of commercial airline network evolution on the U.S. air transportation system, Proceedings of the 9th USA/Europe Air Traffic Management Research and Development Seminar, 2011, pp 572580.Google Scholar
Pfeil, D. and Balakrishnan, H. Identification of robust terminal-area routes in convective weather, Transp. Sci., 2012, 46, (1), pp 5673.Google Scholar
Ahmadbeygi, S., Cohn, A., Guan, Y. and Belobaba, P. Analysis of the potential for delay propagation in passenger airline networks, J. Air Transport Manag., 2008, 14, (5), pp 221236. DOI: 10.1016/j.jairtraman.2008.04.010 CrossRefGoogle Scholar
Soomer, M. and Franx, G. Scheduling aircraft landings using airlines’ preferences, Eur. J. Operat. Res., 2008, 190, (1), pp 277291. DOI: 10.1016/j.ejor.2007.06.017 CrossRefGoogle Scholar
Mofokeng, T. and Marnewick, A. Factors contributing to delays regarding aircraft during A-check maintenance, IEEE Technology and Engineering Management Society Conference, TEMSCON 2017. DOI: 10.1109/TEMSCON.2017.7998375 CrossRefGoogle Scholar
Zou, B. and Hansen, M. Flight delay impact on air fare and flight frequency: A comprehensive assessment, Transp. Res. Part E, 2014, 69, pp 5474. DOI: Xu10.1016/j.tre.2014.05.016 CrossRefGoogle Scholar
Abdel-Aty, M., Lee, C., Bai, Y., Li, X. and Michalak, M. Detecting periodic patterns of arrival delay, J. Air Transport Manag., 2007, 13, (6), pp 355361. DOI: 10.1016/j.jairtraman.2007.06.002 CrossRefGoogle Scholar
Zhong, Z., Varun, D. and Lin, Y. Studies for air traffic management R&D in the ASEAN-region context, J. Air Transport Manag., 2017, 64, pp 1520. DOI: 10.1016/j.jairtraman.2017.06.020 CrossRefGoogle Scholar
Ferrer, J., Oliveira, P. and Parasuraman, A. The behavioral consequences of repeated flight delays, J. Air Transport Manag., 2012, 20, pp 3538. DOI: 10.1016/j.jairtraman.2011.11.001 CrossRefGoogle Scholar
Lubbe, B. and Victor, C. Flight delays: Towards measuring the cost to corporations, J. Air Transport Manag., 2012, 19, pp 912. DOI: 10.1016/j.jairtraman.2011.11.004 CrossRefGoogle Scholar
Li, Q. and Jing, R. Characterization of delay propagation in the air traffic network, J. Air Transport Manag., 2021, 94, 102075. DOI: 10.1016/j.jairtraman.2021.102075 CrossRefGoogle Scholar
Kim, M. and Bae, J. Modeling the flight departure delay using survival analysis in South Korea, J. Air Transport Manag., 2021, 91, 101996. DOI: 10.1016/j.jairtraman.2020.101996 CrossRefGoogle Scholar
Mohammadian, I., Abbasi, B., Abareshi, A. and Goh, M. Antecedents of flight delays in the Australian domestic aviation market, Transp. Res. Interdiscip. Perspect., 2019, 1, 100007. DOI: 10.1016/j.trip.2019.100007 Google Scholar
Du, W., Zhang, M., Zhang, Y., Cao, X. and Zhang, J. Delay causality network in air transport systems, Transp. Res. Part E, 2018, 118, pp 466476.CrossRefGoogle Scholar
Lambelho, M., Mitici, M., Pickup, S. and Marsden, A. Assessing strategic flight schedules at an airport using machine learning-based flight delay and cancellation predictions, J. Air Transport Manag., 2020, 82, 101737. DOI: 10.1016/j.jairtraman.2019.101737 Google Scholar
Chen, Y. and Lin, J. Determinants of flight delays at East Asian airports from an airport, route and network perspective, J. Air Transport Manag., 2021, 94, 102064. https://doi.org/10.1016/j.jairtraman.2021.102064 CrossRefGoogle Scholar
Tu, Y., Ball, M. and Jank, W. Estimating flight departure delay distributions — A statistical approach with long-term trend and short-term pattern, J. Am. Stat. Assoc., 2008, 103, (481), pp 112125. DOI: 10.1198/016214507000000257 CrossRefGoogle Scholar
Mueller, E. and Chatterji, G. Analysis of aircraft arrival and departure delay characteristics, AIAA’s Aircraft Technology, Integration and Operations Conference, 1–3 October 2002, Los Angeles (USA).CrossRefGoogle Scholar
Pamplona, D. and Alves, C.J. An overview of air delay: A case study of the Brazilian scenario, Transp. Res. Interdiscip. Perspect., 2020, 7, 100189. DOI: 10.1016/j.trip.2020.100189 Google Scholar
Fernandes, N., Moro, S., Costa, C. and Aparicio, M. Factors influencing charter flight departure delay, Res. Transp. Business Manag., 2020, 34, 100413.Google Scholar
Hunter, G., Boisvert, B. and Ramamoorthy, K. Advanced national airspace traffic flow management simulation experiments and validation, Proceedings of the 39th Conference on Winter Simulation, 2007, pp 12611267.Google Scholar
Bakhshandeh, R., Shahgholian, K. and Shahraki, A. Model for reduce flights delays using System Dynamics (Case Study in Iranian Airports Company), Interdiscip. J. Contemp. Res. Bus., 2013, 4, (9), pp 746757.Google Scholar
Santos, G. and Robin, M. Determinants of delays at European airports, Transp. Res. Part B, 2010, 44, pp 392403. DOI: 10.1016/j.trb.2009.10.007 CrossRefGoogle Scholar
Wang, C. and Wang, X. Airport congestion delays and airline networks, Transp. Res. Part E, 2019, 122, pp 328349. DOI: 10.1016/j.tre.2018.12.008 CrossRefGoogle Scholar
Wang, Y., Zhu, Y., Zhu, C., Wu, F., Yang, H., Yan, Y. and Hu, C. Indicator of serious flight delays with the approach of time-delay stability, Physica A, 2019, 518, pp 363373. DOI: 10.1016/j.physa.2018.11.038 CrossRefGoogle Scholar
Zhang, M., Chen, S., Sun, L., Du, W. and Cao, X. Characterizing flight delay profiles with a tensor factorization framework, Engineering, 2021, 7, pp 465472. DOI: 10.1016/j.eng.2020.08.024 CrossRefGoogle Scholar
Carvalho, L., Sternberg, A., Goncalves, L., Cruz, A., Soares, J., Brandão, D., Carvalho, G. and Ogasawara, E. On the relevance of data science for flight delay research: A systematic review, Transport Rev., 2021, 41, (4), pp 499528. DOI: 10.1080/01441647.2020.1861123 CrossRefGoogle Scholar
Truong, D. Using causal machine learning for predicting the risk of flight delays in air transportation, J. Air Transport Manag., 2021, 91, 101993. DOI: 10.1016/j.jairtraman.2020.101993 CrossRefGoogle Scholar
Guo, Z., Yu, B., Hao, M., Wang, W., Jiang, Y. and Zong, F. A novel hybrid method for flight departure delay prediction using random forest regression and maximal information coefficient, Aerospace Sci. Technol. 2021. DOI: 10.1016/j.ast.2021.106822 CrossRefGoogle Scholar
IATA. Airport Handling Manual, IATA, 2021, Geneva.Google Scholar
Guss, W. and Salakhutdinov, R. On universal approximation by neural networks with uniform guarantees on approximation of infinite dimensional maps, 2019, arXiv:1910.01545v1.Google Scholar
Vang-Mata, R. Multilayer Perceptrons: Theory and Applications, Nova Science Publication, 2020, Hauppauge (NY).Google Scholar
Agarap, A. Deep Learning using Rectified Linear Units (ReLU), 2019, arXiv:1803.08375v2.Google Scholar
Arora, R., Basu, A., Mianjy, P. and Mukherjee, A. Understanding deep neural networks with rectified linear units, 2018, arXiv:1611.01491v6.Google Scholar
Hara, K., Saito, D. and Shouno, H. Analysis of function of rectified linear unit used in deep learning, 2015 International Joint Conference on Neural Networks (IJCNN). DOI: 10.1109/IJCNN.2015.7280578 CrossRefGoogle Scholar
Arora, S. and Barak, B. Computational Complexity: A Modern Approach, Cambridge University Press, 2009, Cambridge.CrossRefGoogle Scholar
Bao, Y., Xiong, T. and Hu, Z. Forecasting air passenger traffic by support vector machines with ensemble empirical mode decomposition and slope-based method, Discrete Dyn. Nature Soc., 2012, ID 431512, pp 112. DOI: 10.1155/2012/431512 Google Scholar
Schonlau, M. and Zou, R. The random forest algorithm for statistical learning, Stata J., 2020, 20, (1), pp 329. DOI: 10.1177/1536867X20909688 CrossRefGoogle Scholar
Montgomery, D., Peck, E. and Vining, G. Introduction to Linear Regression Analysis. Wiley, 2012, Hoboken (NJ).Google Scholar
Rokach, L. Ensemble Learning: Pattern Classification Using Ensemble Methods, World Scientific Publishing, 2019, Singapore.CrossRefGoogle Scholar
Ganjisaffar, Y., Caruana, R. and Lopes, C. Bagging gradient-boosted trees for high precision, low variance ranking models, SIGIR’11, July 24–28, 2011, Beijing (China).CrossRefGoogle Scholar
Friedman, J. Greedy function approximation: A gradient boosting machine, Ann. Stat., 2000, 29, pp 11891232.Google Scholar
Hanif, I. Implementing Extreme Gradient Boosting (XGBoost) classifier to improve customer churn prediction, ICSA 2019, August 02–03, Bogor (Indonesia). DOI: 10.4108/eai.2-8-2019.2290338 CrossRefGoogle Scholar
Chen, T. and Guestrin, C. XGBoost: A scalable tree boosting system, KDD’16, August 13–17, 2016, San Francisco (USA). DOI: 10.1145/2939672.2939785 CrossRefGoogle Scholar
Wang, L., Zheng, C., Zhou, W. and Zhou, W. A new principle for tuning-free Huber Regression, Statistica Sinica, 2022, 32, pp 125. DOI: 10.5705/ss.202019.0045 Google Scholar
Sun, Q., Zhou, W. and Fan, J. Adaptive Huber Regression, 2018, arXiv:1706.06991v2 [math.ST].Google Scholar
Camana, M., Ahmed, S., Garcia, C. and Koo, I. Extremely randomized trees-based scheme for stealthy cyber-attack detection in smart grid networks, IEEE, 2020, 20, pp 1992119933. DOI: 10.1109/ACCESS.2020.2968934 Google Scholar
Geurts, P., Ernst, D. and Wehenkel, L. Extremely randomized trees, Mach. Learn., 2006, 63, pp 342. DOI: 10.1007/s10994-006-6226-1 CrossRefGoogle Scholar
Izza, Y., Ignatiev, A. and Marques-Silva, J. On explaining Decision Trees, 2020, arXiv:2010.11034v1 [cs.LG].Google Scholar
Azadkia, M. Optimal choice of k for k-nearest neighbor regression, 2020, arXiv:1909.05495v4 [math.ST].Google Scholar
Goodfellow, I., Bengio, Y. and Courville, A. Deep Learning, MIT Press, 2016, Cambridge (MA).Google Scholar
Chen, S., Kuo, S., Chang, K. and Wang, Y. Improving the forecasting accuracy of air passenger and air cargo demand: The application of back-propagation neural networks, Transp. Plann. Technol., 2012, 35, (3), pp 373392.CrossRefGoogle Scholar
Kuo, S. and Chen, S. Air passenger and air cargo demand forecasting: Applying artificial neural networks to evaluating input variables, 12th WCTR, July 11–15, 2010, Lisbon (Portugal).Google Scholar
Liu, Y., Gao, Y. and Yin, W. An improved analysis of stochastic gradient descent with momentum, 34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver (Canada).Google Scholar
Gower, R., Loizou, N., Qian, X., Sailanbayev, A., Shulgin, E. and Richtarik, P. SGD: General Analysis and Improved Rates, 2019, arXiv:1901.09401v4 [cs. LG].Google Scholar
Dingari, M., Reddy, M. and Sumalatha, V. Air traffic forecasting using artificial neural networks, Int. J. Sci. Technol. Res., 2019, 8, (10), pp 556559.Google Scholar
Hastie, T., Tibshirani, R. and Friedman, J. The Elements of Statistical Learning. Data Mining, Inference, and Prediction, Springer, 2013, New York.Google Scholar
Kingma, D. and Ba, J. Adam: A Method for Stochastic Optimization, 2014, arXiv:1412.6980.Google Scholar
Aggarwal, C. Neural Networks and Deep Learning, Springer International, 2018, Cham.CrossRefGoogle Scholar
Hassoun, M. Fundamentals of Artificial Neural Networks, MIT Press, 1995, Cambridge (MA).Google Scholar
Pedrycz, W. and Chen, S. Deep Learning: Concepts and Architectures, Springer, 2020, Cham.Google Scholar
Chang, C. and Lin, C. LIBSVM: A library for support vector machines, ACM Trans. Intell. Syst. Technol., 2011, 2, (3), pp 127.CrossRefGoogle Scholar
Rousseeuw, P. and van Driessen, K. Elliptic envelope. A fast algorithm for the minimum covariance determinant estimator, Technometrics, 1999, 41, (3), pp 212223.CrossRefGoogle Scholar
Henriques, R. and Feiteira, I. Predictive modelling: Flight delays and associated factors, Hartsfield–Jackson Atlanta International Airport, Procedia Comput. Sci., 2018, 138, pp 638645.CrossRefGoogle Scholar
Belcastro, L., Marozzo, F., Talia, M. and Trunfio, P. Using scalable data mining for predicting flight delays, ACM Trans. Intell. Syst. Technol., 2016, 8, (1), Article 5. DOI: 10.1145/2888402 Google Scholar
ACI. Annual World Airport Traffic Report, ACI (Airports Council International) , 2021, Montreal.Google Scholar
IATA. World Air Transport Statistics 2021, IATA, 2021, Geneva.Google Scholar
Díaz Olariaga, O. The role of regional airports in connectivity and regional development, Periodica Polytechnica Transp. Eng., 2021, 49, (4), pp 113. DOI: 10.3311/PPtr.16557 Google Scholar
Díaz Olariaga, O. and Pulido, L. Measurement of airport efficiency. The case of Colombia, Transport Telecommun., 2019, 20, (1), pp 4051. DOI: 10.2478/ttj-2019-0004 CrossRefGoogle Scholar
Díaz Olariaga, O. and Zea, J.F. Influence of the liberalization of the air transport industry on configuration of the traffic in the airport network, Transp. Res. Procedia, 2018, 33, pp 4350.CrossRefGoogle Scholar
Díaz Olariaga, O. and Carvajal, A. Perspectiva geográfica del desarrollo de la conectividad aérea en Colombia, Boletín Geográfico, 2020, 42, (2), pp 145168.Google Scholar
Kearns, S. Fundamentals of International Aviation, Routledge, 2021, London.Google Scholar
Budd, L. and Ison, S. Air Transport Management, Routledge, 2017, London.Google Scholar
Borsky, S. and Unterberger, C. Bad weather and flight delays: The impact of sudden and slow onset weather events, Econ. Transp., 2019, 18, pp 1026. DOI: 10.1016/j.ecotra.2019.02.002 CrossRefGoogle Scholar
Choi, S., Kim, Y., Briceno, S. and Mavris, D. Prediction of weather-induced airline delays based on machine learning algorithms, IEEE/AIAA 35th Digital Avionics Systems Conference Proceeding, 2016. DOI: 10.1109/DASC.2016.7777956 CrossRefGoogle Scholar
ACI. Guide to Airport Performance Measures, ACI World, 2012, Montreal.Google Scholar
FAA - Federal Aviation Administration. Definitions of variables Available, 2022, https://aspmhelp.faa.gov/index.php/APM:_Analysis:_Definitions_of_Variables Google Scholar
OAG. OAG Punctuality League, OAG Aviation Worldwide, 2017, Chicago.Google Scholar
ICAO. Manual on Collaborative Air Traffic Flow Management (ATFM). Doc 9971, ICAO, 2018, Montreal.Google Scholar
European Observatory on Airport Capacity & Quality. Delays to Air Transport in Europe: Methods of Measuring, Reporting and Analyzing, European Commission, 2015, Brussels.Google Scholar
EUROCONTROL. A Matter of Time: Air Traffic Delay in Europe, EUROCONTROL, 2007, Brussels.Google Scholar