Skip to main content Accessibility help
×
Home
Hostname: page-component-59b7f5684b-569ts Total loading time: 0.261 Render date: 2022-10-02T19:10:55.809Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Gyro-stellar inertial attitude estimation for satellite with high motion rate

Published online by Cambridge University Press:  18 April 2022

C.-L. Lin*
Affiliation:
Department of Electrical Engineering, National Chung Hsing University, Taichung, Taiwan
J.-C. Li
Affiliation:
Department of Electrical Engineering, National Chung Hsing University, Taichung, Taiwan National Space Organization, Hsinchu, Taiwan
C.-L. Chiu
Affiliation:
National Space Organization, Hsinchu, Taiwan
Y.-W.A. Wu
Affiliation:
National Space Organization, Hsinchu, Taiwan
Y.-W. Jan
Affiliation:
National Space Organization, Hsinchu, Taiwan
*
*Corresponding author. E-mail: chunlin@dragon.nchu.edu.tw

Abstract

For a common micro-satellite, orbiting in a circular sun-synchronous orbit (SSO) at an altitude between 500 and 600km, the satellite attitude during off-nadir imaging and staring-imaging operations can be up to ±45 degree on roll and pitch angles. During these off-nadir pointing for both multi-trip operation and staring imaging operations, the spacecraft body is commonly subject to high-rate motion. This posts challenges for a spacecraft attitude determination subsystem called Gyro Stellar Inertial Attitude Estimate (GS IAE), which employs gyros and star sensors to maintain the required attitude knowledge, since star trackers will severely degrade attitude estimation accuracies when the spacecraft is subject to high-rate motion. This paper analyses the star motion-induced errors for a typical star tracker, models the star motion-induced errors to assess the performance impact on the attitude estimation accuracy, and investigates the adaptive extended Kalman filter design in the GS IAE while evaluating its effectiveness.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of Royal Aeronautical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lefferts, E.J., Markley, F.L. and Shuster, M.D. Kalman filtering for spacecraft attitude estimation, AIAA J. Guidance Control Dyn., 1982, 5, (5), pp 417429.CrossRefGoogle Scholar
Wei, W.T., Tsai, Y.F., Yeh, M., Jan, Y.W. and Wu, Y.W. MEMS-based gyro-stellar inertial attitude estimate for NSPO micro-sat program, Proceedings of IEEE Aerospace Conference, 2019, pp 115.CrossRefGoogle Scholar
Hou, B., He, Z., Zhou, H. and Wang, J. Integrated design and accuracy analysis of star sensor and gyro on the same benchmark for satellite attitude determination system, IEEE/CAA J. Automatica Sinica, 2019, 6, (4), pp 10741080.CrossRefGoogle Scholar
Wu, Y.A. and Hein, D.H. Stellar inertial attitude determination for LEO spacecraft, Proceedings of IEEE Conference on Decision and Control, 1996, 3, pp 32363244.Google Scholar
Choi, S.H. and Park, C.G. Attitude determination and disturbance estimation based on adaptive Kalman filter for nano-satellite, Proceedings of International Conference on Control, Automation and Systems, 2016, pp 10201024.CrossRefGoogle Scholar
Kim, A. and Golnaraghi, M.F. A quaternion-based orientation estimation algorithm using an inertial measurement unit, Position Location and Navigation Symposium, 2004, pp 268272.Google Scholar
Kraft, E. A quaternion-based unscented Kalman filter for orientation tracking, Proceedings of International Conference of Information Fusion, 2003, pp 4754.CrossRefGoogle Scholar
LaViola, J.J. A comparison of unscented and extended Kalman filtering for estimating quaternion motion, Proceedings of the American Control Conference, 2003, pp 24352440.Google Scholar
Feng, B., Fu, M., Ma, H., Xia, Y. and Wang, B. Kalman filter with recursive covariance estimation—sequentially estimating process noise covariance, IEEE Trans. Ind. Electron., 2014, 61, (11), pp 62536263.CrossRefGoogle Scholar
Huang, Y., Zhang, Y., Wu, Z., Li, N. and Chambers, J. A novel adaptive Kalman filter with inaccurate process and measurement noise covariance matrices, IEEE Trans. Autom. Control, 2018, 63, (2), pp 594601.CrossRefGoogle Scholar
Crassidis, J.L., Cheng, Y., Fosbury, A.M. and Nebelecky, C.K. Decentralised attitude estimation using a quaternion covariance intersection approach, J. Astronaut. Sci., 2013, doi: 10.1007/BF03321497.CrossRefGoogle Scholar
Dey, A., Sadhu, S. and Ghoshal, T.K. Adaptive divided difference filter for nonlinear systems with unknown noise, Proceedings of The International Conference on Control, Instrumentation, Energy and Communication, 2014, pp 573577.CrossRefGoogle Scholar
Patra, N. and Sadhu, S. Adaptive extended Kalman filter for the state estimation of anti-lock braking system, Proceedings of Annual IEEE India Conference, 2015, pp 16.CrossRefGoogle Scholar
Dong, Y. and Colibrys, S.A. EMS inertial navigation systems for aircraft, 2013, doi: 10.1533/9780857096487.2.177.CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Gyro-stellar inertial attitude estimation for satellite with high motion rate
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Gyro-stellar inertial attitude estimation for satellite with high motion rate
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Gyro-stellar inertial attitude estimation for satellite with high motion rate
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *