Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-20T03:34:00.563Z Has data issue: false hasContentIssue false

X-Ray Determination of Stresses Distribution in a Coarse Grained Silicon Billet

Published online by Cambridge University Press:  06 March 2019

P. Gergaud
Affiliation:
ENSAM, LM3, URA 1219, 151 Bd de l'Hdpital, 75103 Paris, FRANCE MATOP, URA CNRS 1530, Case 151, Faculté des sciences de St. Jérôme, F- 13397 Marseille Cedex 20 - FRANCE
G. Dour
Affiliation:
EPM-MADYLAM, ENSHMG, BP 95, 38 402 Saint Martin d'Hères, FRANCE PHOTOWATT Int. S.A., 33 rue St. Honoré, 38 500 Bourgoin Jallieu, FRANCE
K. Inal
Affiliation:
ENSAM, LM3, URA 1219, 151 Bd de l'Hdpital, 75103 Paris, FRANCE
J. L. Lebrun
Affiliation:
ENSAM, LM3, URA 1219, 151 Bd de l'Hdpital, 75103 Paris, FRANCE
Get access

Abstract

The present study concerns residual stresses analysis in porycrystalhtie solar silicon material, which is continuously cast in a cold crucible. The observation of cracks and a modeling of thermal stresses suggest us that stresses in the center region are tensile and the ones in the peripheral region are compressive. X-ray measurement of stresses would be an experimental proof of the observations and an evaluation of the stresses levels. Unfortunately, the obtained material exhibits coarse grains with the size of up to one millimeter. In this case, where only a few crystals are irradiated by the incident X-ray beam, the classical sin2Ψ method is no longer valid. A specific analysis must be carried out. The results are of good accuracy comparing the low stress levels observed. The measured stress distribution on a radius of the billet is not always in good agreement with the analytical calculus.

Type
Research Article
Copyright
Copyright © International Centre for Diffraction Data 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Gamier, M., Driole, J., Gagnoud, A., Pallière, P., Induction furnace for continuous casting of metals and alloys - Brevet FR 2609655 Cezus Cie EUR02IRC, US patent 48.Google Scholar
2 Dour, G., Durand, F. and Brechet, Y., Thermal stress history displayed in an Ashby type diagram, Application to the continuous casting of aluminiuni alloys - MCWASP VII,Ed M. Cross and Campbell, J., The Mineral, Metals and Materials Society, 295- 302 (1995).Google Scholar
3 Dour, G., Durand, F. and Brechet, Y., Thermo-visco-plastic stress analysis in continuous casting - application to silicon, submitted to Modeling and simulation in materials science and engineering, (1996).Google Scholar
4 Dölle, H., The influence of multiaxial stress states, stress gradients and elastic anisotropy on the evaluation of (residual) stresses by X-rays, J. Appl. Cryst, 12, 489 501 (1979).Google Scholar
5 Francois, M., Lebrun, J. L., X-ray stress determination on materials with large size crystallites - Theoretical approach, Proc. of the European conference on residual stresses, Frankfort, Germany, 295-302 (1992).Google Scholar
6 Crostack, H. A.., Reimers, W., Eckold, G., Analysis of residual stresses in single grains of polycrystalline materials, « Residual stresses in science and technology. », Edited by Macherauh and Hauk : 281-288 (1987).Google Scholar
7 Crostack, H. A., Reimers, W., X-ray diffraction analysis of residual stresses in coarse grained materials, « Residual stresses in science and technology », Edited by Macherauh and Hauk: 289-294 (1987).Google Scholar
8 Boley, B. A.. and Weiaer, J. H., « Theory of thermal stresses », KRIEGER, (1968).Google Scholar
9 Alexander, H. and Haasen, P., Dislocations and plastic flow in the Diamond Structure, Solid State Physics, 22-. 21-158 (1968).Google Scholar
10 Brillouin, L.. “Les tenseurs en mecanique et en elasticttè”. Masson and Cie Editors (1960)Google Scholar
11 Barral, M. SpraueL, J. M. Contribution to the X-ray stress determination method on macrograins, « Residual stresses in science and technology », Edited by Macherauh and Hauk: 265-273 (1987).Google Scholar
12 Servant, S.., Pulin, B., Sarti, D.. and Durand, F., Grain structure of silicon solidified from an inductive cold crucible, Mat Sc Eng, A173 : 63-66 (1993).Google Scholar
13 Gergaud P., Ihal K., Lebrun XL., private communication.Google Scholar
14 Reuss, A., Berechnung der fliessgrenze von mischkristallen auf grung der plastizitätsbediagung fur einkrista He Z. Angew. Math. Mech., 9 : 4958 (1929).Google Scholar
15 Voigt, W., Lehrbuch der Kristauphysik, Leipzig-Berlin : Teubner - Verlag, (1928).Google Scholar