Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-22T06:23:25.726Z Has data issue: false hasContentIssue false

A Simple Photogrammetry Rig for the Reliable Creation of 3D Artifact Models in the Field

Lithic Examples from the Early Upper Paleolithic Sequence of Les Cottés (France)

Published online by Cambridge University Press:  16 January 2017

Samantha Thi Porter
Affiliation:
Department of Anthropology, University of Minnesota, 395 Humphrey Center, 301 19th Ave S, Minneapolis, MN 55455, United States (port0228@umn.edu)
Morgan Roussel
Affiliation:
Leiden University, Van Steenis Building, Einsteinweg 2, 2333 CC Leiden, Netherlands (m.b.roussel@arch.leidenuniv.nl)
Marie Soressi
Affiliation:
Leiden University, Van Steenis Building, Einsteinweg 2, 2333 CC Leiden, Netherlands (m.a.soressi@arch.leidenuniv.nl)

Abstract

Three-dimensional (3D) artifact modeling is becoming an increasingly utilized tool in archaeology. In comparison with other methods of 3D scanning, photogrammetry has the benefits of being relatively inexpensive, mobile, and more adaptable for use in field conditions. As part of a larger project to document variability in lithic production systems across the Middle to Upper Paleolithic Transition in Western Europe, we developed a photography rig for the express purpose of systematically capturing images for the creation of 3D photogrammetric models. This low-cost rig greatly streamlines both the photo-taking and post-processing stages of model creation. Additional tips relating to the coating of difficult-to-capture objects with a mineral spray are also provided. Three-dimensional models of lithic cores from the Châtelperronian, Protoaurignacian, and Early Aurignacian levels of the site of Les Cottés (France) are presented as examples of the quality of model that can be produced using this system.

Modelar artefactos en 3D se está convirtiendo en una de las herramientas más utilizadas en arqueología. En comparación con otros métodos de modelado en 3D, el registro de la fotogrametría tiene las ventajas de ser relativamente barato, móvil, y más adaptable para usar en condiciones de campo. Como parte de un proyecto para documentar la variabilidad en los sistemas de producción lítica a través de la transición del Paleolítico Medio al Paleolítico Superior en la Europa del Oeste, una plataforma de fotografía fue desarrollada con el propósito expreso de tomar fotografías para la creación de modelos fotogramétricos 3D. Esta plataforma de bajo coste agiliza en gran medida tanto la toma de fotografías como las etapas de post-procesamiento de la creación del modelo. También, se proporcionan consejos adicionales relativos al recubrimiento los objetos difíciles de capturar en un aerosol mineral. Los modelos 3D de los núcleos líticos de la Chatelperroniense, Protoauriñaciense, y los niveles del Auriñaciense antiguo del sítio de Les Cottés (Francia) se proporcionan como ejemplos de la calidad del modelo que se puede producir usando este sistema.

Type
Research Article
Copyright
Copyright © Society for American Archaeology 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

Abel, Richard L., Parfitt, Simon, Ashton, Nick, Lewis, Simon G., Scott, Beccy, and Stringer, Chris 2011. Digital Preservation and Dissemination of Ancient Lithic Technology with Modern Micro-CT. Computers and Graphics 35:878884.Google Scholar
Ahmed, Namir, Carter, Michael, and Ferris, Neal 2014. Sustainable Archaeology through Progressive Assembly 3D Digitization. World Archaeology 46:137154.Google Scholar
Airvaux, Jean 2005. Note sur de nouveaux procédés pour le dessin des objets lithiques. Bulletin Préhistoire du Sud-Ouest 12:218221.Google Scholar
Barnes, Adam 2011. Close-Range Photogrammetry: A Guide to Good Practice in Archaeology Data Service / Digital Antiquity Guides to Good Practice. Archaeology Data Service, University of York, UK. Electronic document, http://guides.archaeologydataservice.ac.uk/g2gp/Photogram_Toc,accessed June 6, 2015.Google Scholar
Blais, François 2004. Review of 20 Years of Range Sensor Development. Journal of Electronic Imaging 13:231240.CrossRefGoogle Scholar
Bretzke, Knut, and Conard, Nicholas J. 2012. Evaluating Morphological Variability in Lithic Assemblages Using 3D Models of Stone Artifacts. Journal of Archaeological Science 39:37413749.CrossRefGoogle Scholar
Clarkson, Chris 2013. Measuring Core Reduction Using 3D Flake Scar Density: A Test Case of Changing Core Reduction at Klasies River Mouth, South Africa. Journal of Archaeological Science 40:43484357.Google Scholar
Clarkson, Chris, and Hiscock, Peter 2011. Estimating Original Flake Mass from 3D Scans of Platform Area. Journal of Archaeological Science 38:10621968.CrossRefGoogle Scholar
Clarkson, Chris, Vinicius, Lucio, and Lahr, Marta Mirazón 2006. Quantifying Flake Scar Patterning on Cores Using 3D Recording Techniques. Journal of Archaeological Science 33:132142.CrossRefGoogle Scholar
Cultural Heritage Imaging 2015. Photogrammetry. Electronic document, http://culturalheritageimaging.org/Technologies/Photogrammetry/, accessed June 6, 2015.Google Scholar
Davis, Lorten G., Bean, Daniel W., Nyers, Alex J., and Brauner, David R. 2015. GLIMR: A GIS-Based Method for the Geometric Morphometric Analysis of Artifacts. Lithic Technology 40: 199217.Google Scholar
Gingerich, Joseph A. M., Sholts, Sabrina B., and Wärmländer, Sebastian K. T. S. 2014 Fluted Point Manufacture in Eastern North America: An Assessment of Form and Technology Using Traditional Metrics and 3D Digital Morphometrics. World Archaeology 46:101122.Google Scholar
Grosman, Leore, Sharon, Gonen, Goldman-Neuman, Talia, Sikt, Oded, and Smilansky, Uzy 2011. Studying Post Depositional Damage on Acheulian Bifaces Using 3-D Scanning. Journal of Human Evolution 60:398406.Google Scholar
Grosman, Leore, Smikt, Oded, and Smilansky, Uzy 2008. On the Application of 3-D Scanning Technology for the Documentation and Typology of Lithic Artifacts. Journal of Archaeological Science 35:31013110.Google Scholar
Jacobs, Zenobia, Li, Bo, Jankowski, Nathan, and Soressi, Marie 2015. Testing of a Single Grain OSL Chronology across the Middle to Upper Palaeolithic Transition at Les Cottés (France). Journal of Archaeological Science 54:110122.Google Scholar
Katz, David, and Friess, Martin 2014. Technical Note: 3D from Standard Digital Photography of Human Crania—A Preliminary Assessment. American Journal of Physical Anthropology 154:152158.CrossRefGoogle ScholarPubMed
Kersten, Thomas P., and Lindstaedt, Maren 2012. Image-Based Low-Cost System for Automatic 3D Recording and Modelling of Archaeological Finds and Objects. In Progress in Cultural Heritage Preservation.4th International Conference, EuroMed 2012, Limassol, Cyprus, October 29 – November 3, 2012 Proceedings, edited by Ioannides, Marinos, Fritsch, Dieter, Leissner, Johanna, Davies, Rob, Remondino, Fabio, and Caffo, Rossella, pp. 1–10. Springer, Berlin.Google Scholar
Koutsoudis, Anestis, Vidmarb, Blaž, and Arnaoutoglou, Fotis 2013. Performance Evaluation of a Multi-image 3D Reconstruction Software on a Low-Feature Artefact. Journal of Archaeological Science 40:4450–4445.CrossRefGoogle Scholar
Lin, Sam C., Douglass, Matthew J., Holdaway, Simon H., and Floyd, Bruce 2010. The Application of 3D Laser Scanning Technology to the Assessment of Ordinal and Mechanical Cortex Quantification in Lithic Analysis. Journal of Archaeological Science 37:694702.Google Scholar
Lin, Sam C., Rezek, Zeljko, Braun, David, and Dibble, Harold L. 2013. On the Utility and Economization of Unretouched Flakes: The Effects of Exterior Platform Angle and Platform Depth. American Antiquity 78:724745.Google Scholar
Luhmann, Thomas, Robson, Stuart, Kype, Stephen, and Boehm, Jan 2013. Close-Range Photogrammetry and 3D Imaging. 2nd ed.Walter de Gruyter GmbH, Berlin.Google Scholar
McCarthy, John 2014. Multi-Image Photogrammetry as a Practical Tool for Cultural Heritage Survey and Community Engagement. Journal of Archaeological Science 43:175185.Google Scholar
Magnani, Matthew 2014. Three-Dimensional Alternative to Lithic Illustration. Advances in Archaeological Practice 2:285297.Google Scholar
Means, Bernard K., McCuistion, Ashley, and Bowles, Courtney 2013. Virtual Artifact Curation of the Historical Past and the NextEngine Desktop 3D Scanner. Technical Briefs in Historical Archaeology 6:112.Google Scholar
Morales, Juan I., Lorenzo, Carlos, and Vergès, Josep M. 2015. Measuring Retouch Intensity in Lithic Tools: A New Proposal Using 3D Scan Data. Journal of Archaeological Method and Theory 22:543558.CrossRefGoogle Scholar
Olson, Brandon R., Gordon, Jody M., Runnels, Curtis, and Chomyszak, Steve 2014. Experimental Three-Dimensional Printing of a Lower Paleolithic Handaxe: An Assessment of the Technology and Analytical Value. Lithic Technology 39(3):162172.Google Scholar
Olson, Brandon R., Placchetti, Ryan A., Quartermaine, Jamie, and Killebrew, Anne E. 2013. The Tel Akko Total Archaeology Project (Akko, Israel): Assessing the Suitability of Multi-Scale 3D Field Recording in Archaeology. Journal of Field Archaeology 38:244262.CrossRefGoogle Scholar
Richardson, Eitan, Grosman, Leore, Smilansky, Uzy, and Werman, Michael 2014. Extracting Scar and Ridge Features from 3D-scanned Lithic Artifacts. In Archaeology in the Digital Era: Papers from the 40th Annual Conference of Computer Applications and Quantitative Methods in Archaeology (CAA), Southampton, 26–29 March 2012, edited by Earl, Graeme, Sly, Tim, Chrysanthi, Angeliki, Murrieta-Flores, Patricia, Papadopoulos, Constantinos, Ramonowska, Iza, and Wheatley, David, pp. 8392. Amsterdam University Press, Amsterdam.Google Scholar
Riddle, Andrew T. R., and Chazan, Michael 2014. Stone Tools from the Inside Out: Radial Point Distribution. World Archaeology. 46:123136.Google Scholar
Roussel, Morgan, and Soressi, Marie 2013. Une nouvelle séquence du Paléolithique supérieur ancien aux marges sud-ouest du Bassin parisien: Les Cottés dans la Vienne. In Le Paléolithique supérieur ancien de l’Europe du nord-ouest (35 000–15 000 BP). Réflexions et synthèses à partir d’un Projet Collectif de Recherches sur le Paléolithique supérieur ancien du Bassin parisien, edited by Bodu, Pierre, Chehmana, Lucile, Klaric, Laurent, Mevel, Ludovic, Soriano, Sylvain, and Teyssandier, Nicolas, pp. 283297. Mémoire LVI de la Société Préhistorique Française. Société Préhistorique Française, Paris.Google Scholar
Shott, Michael 2014. Digitizing Archaeology: A Subtle Revolution in Analysis. World Archaeology 46:19.Google Scholar
Shott, Michael J., and Trail, Brian W. 2010. Exploring New Approaches to Lithic Analysis: Laser Scanning and Geometric Morphometrics. Lithic Technology 32:195220.Google Scholar
Soressi, Marie, and Roussel, Morgan 2014. European Middle to Upper Palaeolithic Transitional Industries: Châtelperronian. In Encyclopedia of Global Archaeology, edited by Smith, Claire, pp. 26792693. Springer, New York.Google Scholar
Soressi, Marie, Roussel, Morgan, Rendu, William, Primault, Jérôme, Rigaud, Solange, Texier, Jean-Pierre, Richter, Daniel, Talamo, Sahra, Ploquin, Florian,Larmignat, Blandine, Tavormina, Carlotta, and Hublin, Jean-Jacques 2010. Les Cottés : nouveaux travaux sur l’un des gisements de référence pour la transition Paléolithique moyen-supérieur. In Préhistoire entre Vienne et Charente: Hommes et Sociétés du Paléolithique, edited by Buisson-Catil, Jacques and Primault, Jerôme, pp.221234. Association des Publications Chauvinoises, Chauvigny, France. Google Scholar
Sumner, T. Alexandra, and Riddle, Andrew T. R. 2008. Virtual Paleolithic: Assays in Photogrammetric Three-Dimensional Artifact Modelling. PaleoAnthropology, 158169.Google Scholar
Talamo, Sahra, Soressi, Marie, Roussel, Morgan, Richards, Mike, and Hublin, Jean-Jacques 2012. A Radiocarbon Chronology for the Complete Middle to Upper Palaeolithic Transitional Sequence of Les Cottés (France). Journal of Archaeological Science 39:175183 Google Scholar