Hostname: page-component-7c8c6479df-7qhmt Total loading time: 0 Render date: 2024-03-29T01:03:31.077Z Has data issue: false hasContentIssue false

Absorbed Residue Analysis of a Mississippi Plain Jar from Angel Mounds (12Vg1)

Lipid Distribution Revisited

Published online by Cambridge University Press:  16 January 2017

Eleanora Reber
Affiliation:
Department of Anthropology, University of North Carolina, Wilmington, 601 S. College Rd., Wilmington, NC 28403 (rebere@uncw.edu)
Timothy E. Baumann
Affiliation:
McClung Museum of Natural History and Culture, 1327 Circle Park Drive, Knoxville, TN 37996
G.William Monaghan
Affiliation:
Indiana Geological Survey and Department of Geological Sciences, Indiana University Bloomington, 423 North Fess Ave, Bloomington, IN 47405
Kelsey Noack Myers
Affiliation:
Glenn A. Black Laboratory of Archaeology, Department of Anthropology, Indiana University Bloomington, 423 North Fess Ave, Bloomington, IN 47405

Abstract

For the first time in North American archaeology, absorbed residue analysis was conducted on multiple samples from the same vessel, a complete Mississippi Plain jar from Angel Mounds (12Vg1). This approach provided comprehensive, residue-based interpretations of the form and function of a single pot. The Mississippi Plain jar was recovered from a burnt house floor along with the broken remains of a similar vessel and burnt maize. Qualitative and quantitative analyses of absorbed lipid residues were performed on four different parts of this vessel to determine its contents and function. Comparison of absorbed residues from the pot and soil lipids was used to determine whether the pot was buried with contents intact. The results indicate that this vessel was used to cook a mixture of riverine (lean fish or shellfish) and plant resources, probably including maize. Diterpenoid biomarkers were also present, suggesting that conifer resin was used either to seal the pot or as a flavoring. The jar, though deposited whole, was probably not buried with contents intact.

Por primera vez en la arqueología de América del Norte, se tomaron múltiples muestras de una misma vasija para su análisis por absorción de residuos, una olla completa de Angel Mounds (12Vg1). Esta estrategia ha permitido realizar interpretaciones exhaustivas basadas en los residuos en torno a la forma y función de una sola olla. La olla “Mississippi Plain” se encontró sobre el piso quemado de una casa, junto a los restos de una olla parecida y de maíz quemado. El análisis cualitativo y cuantitativo de los análisis de absorción de residuos grasos se realizó en cuatro partes distintas de la olla para determinar sus contenidos y su función. La comparación del análisis de residuos de la olla con los lípidos del suelo se utilizaron para d terminar si la vasija h bía sido nterrada con el contenido intacto. Los resultados indican que esta vasija se utilizó para cocinar una mezcla de recursos acuáticos (pescado magro o crustáceos) y de vegetación riparia, incluyendo posiblemente maíz. Los biomarcadores diterpenoides también estuvieron presentes, lo que sugiere que la resina extraída de coníferas se uso para impermeabilizar la olla o bien como condimento. La olla, aunque se depositó completa, probablemente no fue enterrada con el contenido intacto.

Type
Research Article
Copyright
Copyright © Society for American Archaeology 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

Adams, William R. 1949 Faunal Remains from the Angel Site. Unpublished Master’s thesis, Department of Anthropology, Indiana University, Bloomington.Google Scholar
Baeten, J., Jervis, B., De Vos, D., and Waelkens, M. 2013 Molecular Evidence for the Mixing of Meat, Fish and Vegetables in Anglo-Saxon Coarseware from Hamwic, UK. Archaeometry 55:11501174.Google Scholar
Baker, S. M., and Hornbach, D. J. 2001 Seasonal Metabolism and Biochemical Composition of Two Unionid Mussels, Actinonaias Ligamentina and Amblema Plicata. Journal of Molluscan Studies 67:407416.CrossRefGoogle Scholar
Barnard, H., Ambrose, S. H., Beehr, D. E, Forster, M. D., Lanehart, R. E., Malainey, M. E., Parr, R. E., Rider, M., Solazzo, C., and Yohe Ii, R. M. 2007 Mixed Results of Seven Methods for Organic Residue Analysis Applied to One Vessel with the Residue of a Known Foodstuff. Journal of Archaeological Science 34:2837.Google Scholar
Baumann, Timothy, Gerke, Tammie, and Reber, Eleanora 2013 Sun Circles and Science: Negative Painted Pottery from Angel Mounds (12Vg1). Midcontinental Journal of Archaeology 38:219244.Google Scholar
Baumann, Timothy, Monaghan, G. William, Peebles, Christopher S., Marshall, C., Krus, Anthony, and Marshall, John B. 2011 The Legacy of Lilly, Black, and the WPA at Angel Mounds near Evansville, Indiana. The SAA Archaeological Record 11(5):3438.Google Scholar
Bianchi, Giorgio, Avato, Pinarosa, and Salamini, Francesco 1984 Surface Waxes from Grain, Leaves, and Husks of Maize (Zea Mays L.). Cereal Chemistry 61:4547.Google Scholar
Black, Glenn 1967 Angel Site: An Archaeological, Hisotrical, and Ethnological Study. Indiana Historical Society, Indianapolis.Google Scholar
Bösl, C., Grupe, G., and Peters, J. 2006 A Late Neolithic Vertebrate Food Web Based on Stable Isotope Analyses. International Journal of Osteoarchaeology 16:296315.Google Scholar
Brown, Louise D., and Heron, Carl 2005 Presence or Absence: A Preliminary Study into the Detection of Fish Oils in Ceramic. In The Zooarchaeology of Fats, Oils, Milk and Dairying, edited by Mulville, J. and Outram, A. K., pp. 6776. Oxbow, Oxford.Google Scholar
Charters, S., Evershed, R. P., Goad, L. J., Leyden, A., Blinkhorn, P. W., and Denham, V. 1993 Quantification and Distribution of Lipid in Archaeological Ceramics: Implications for Sampling Potsherds for Organic Residue Analysis and the Classification of Vessel Use. Archaeometry 35:211223.Google Scholar
Charters, S., Evershed, R. P., Quye, A., Blinkhorn, P. W., and Reeves, V. 1997 Simulation Experiments for Determining the Use of Ancient Pottery Vessels: The Behaviour of Epicuticular Leaf Wax during Boiling of a Leafy Vegetable. Journal of Archaeological Science 24:17.Google Scholar
Copley, M. S., Berstan, R., Dudd, S. N., Straker, V., Payne, S., and Evershed, R. P. 2005 Dairying in Antiquity. I. Evidence from Absorbed Lipid Residues Dating to the British Iron Age. Journal of Archaeological Science 32:485503.Google Scholar
Corr, Lorna T., Richards, Michael P., Jim, Susan, Ambrose, Stanley H., Mackie, Alexander, Beattie, Owen, and Evershed, Richard P. 2008 Probing Dietary Change of the Kwädąy Dän Ts’ìnchį Individual, an Ancient Glacier Body from British Columbia: I. Complementary Use of Marine Lipid Biomarker and Carbon Isotope Signatures as Novel Indicators of a Marine Diet. Journal of Archaeological Science 35:21022110.Google Scholar
Dudd, Stephanie N., Evershed, Richard P., and Gibson, Alex M. 1999 Evidence for Varying Patterns of Exploitation of Animal Products in Different Prehistoric Pottery Traditions Based on Lipids Preserved in Surface and Absorbed Residues. Journal of Archaeological Science 26:14731482.CrossRefGoogle Scholar
Eglinton, Geoffrey, and Logan, Graham A. 1991 Molecular Preservation. Philosophical Transactions of the Royal Society of London B 333:315328.Google Scholar
Engewald, Werner 2009 Evaluation and Estimation of Chromatographic Data in GC. In Quantification in LC and GC: A Practical Guide to Good Chromatographic Data, edited by Kuss, H.J. and Kromidas, S., pp. 211242. Translated by M. Hillebrand. Wiley-CH, Germany.Google Scholar
Evershed, Richard P. 2008 Organic Residue Analysis in Archaeology: The Archaeological Biomarker Revolution. Archaeometry 50:895924.Google Scholar
Evershed, Richard P., Dudd, Stephanie N., Anderson-Stojanovic, Virginia R., and Gebhard, Elizabeth R. 2003 New Chemical Evidence for the Use of Combed Ware Pottery Vessels as Beehives in Ancient Greece. Journal of Archaeological Science 30:112.CrossRefGoogle Scholar
Evershed, Richard P., Dudd, Stephanie N., Charters, Stephanie, Mottram, Helen R., Stott, Andrew W., Anthony, Raven, van Bergen, Pim F., and Bland, Helen A. 1999 Lipids as Carriers of Anthropogenic Signals from Prehistory. Philosophical Transactions of the Royal Society of London B 354:1931.CrossRefGoogle Scholar
Evershed, Richard P., Heron, Carl, Charters, Stephanie, and Goad, L. John 1992 The Survival of Food Residues: New Methods of Analysis, Interpretation and Application. In New Developments in Archaeological Sciences (Proceedings of the British Academy), edited by Pollard, A. M., pp. 187208. Proceedings of the British Academy. Oxford Univeristy Press, Oxford.Google Scholar
Evershed, Richard P., Heron, Carl, and Goad, L. John 1990 Analysis of Organic Residues of Archaeological Origin by High-Temperature Gas Chromatography and Gas Chromatography-Mass Spectrometry. Analyst 115:13391342.Google Scholar
Fischer, Anders, and Heinemeier, Jan 2003 Freshwater Reservoir Effect in 14C Dates of Food Residue on Pottery. Radiocarbon 45:449466.Google Scholar
Gaskell, Simon J., and Eglinton, Geoffrey 1976 Sterols of a Contemporary Lacustrine Sediment. Geochimica et Cosmochimica Acta 40:12211228.CrossRefGoogle Scholar
Greseth, S. L., Cope, W. G., Rada, R. G., Waller, D. L., and Bartsch, M. R. 2003 Biochemical Composition of Three Species of Unionid Mussels after Emersion. Journal of Molluscan Studies 69(2):101106.CrossRefGoogle Scholar
Hansel, Fabricio A., Copley, Mark S., Madureira, Luiz A. S., and Evershed, Richard P. 2004 Thermally Produced w-(O-Alkylphenyl) Alkanoic Acids Provide Evidence for the Processing of Marine Products in Archaeological Pottery Vessels. Tetrahedron Letters 45:29993002.Google Scholar
Hart, John P., Lovis, William A., Urquhart, Gerald R., and Reber, Eleanora A. 2013 Modeling Freshwater Reservoir Offsets on Radiocarbon-Dated Charred Cooking Residues. American Antiquity 78:536552.CrossRefGoogle Scholar
Hemsley, Samantha 1997 The Analysis of Lipid Residues from Iron Age Pottery: An Examination of the Diagnostic Potential of the Fatty Acids of the Surviving Triacylglycerides. Unpublished Honors thesis, University of Bradford, UK.Google Scholar
Heron, Carl, and Evershed, Richard P. 1990 The Analysis of Organic Residues and the Study of Pottery Use. In Archaeological Method and Theory 5, edited by Schiffer, M.B., pp. 247284. University of Arizona Press, Tucson.Google Scholar
Heron, Carl, Evershed, Richard P., Goad, L. John, and Denham, V. 1989 New Approaches to the Analysis of Organic Residues from Archaeological Remains. In Archaeological Sciences 1989: Proceedings of a Conference on the Application of Scientific Techniques to Archaeology, Bradford, September 1989, edited by Budd, P., Chapman, B., Jackson, C., Janaway, R., and Ottaway, B., pp. 332339. Oxbow Monograph 9. Oxbow, Oxford.Google Scholar
Heron, C., Evershed, R. P., and Goad, L. J. 1991 Effects of Migration of Soil Lipids on Organic Residues Associated with Buried Potsherds. Journal of Archaeological Science 18:641659.Google Scholar
Hilgeman, Sherri 2000 Pottery and Chronology at Angel. The University of Alabama Press, Tuscaloosa.Google Scholar
Jefferies, Richard W 2009 Holocene Hunter-Gatherers of the Lower Ohio River Valley. University of Alabama Press, Tuscaloosa.Google Scholar
Kolattukudy, P.E. (editor) 1976 The Chemistry and Biochemistral of Natural Waxes. Elsevier Press, Amsterdam.Google Scholar
Lipo, Carl P. 2001 Science, Style, and the Study of Community Structure: An Example from the Central Mississippi River Valley. BAR International Series 918. Archaeopress, Oxford.Google Scholar
Logan, Graham A., Collins, Matthew J., and Eglinton, Geoffrey 1991 Preservation of Organic Biomolecules. In Taphonomy, Releasing the Data Locked in the Fossil Record, edited by Allison, P.A. and Briggs, D.E.G., pp. 118. Topics in Geology 9. Plenum Press, New York.Google Scholar
Malainey, M. E., Przbylski, R., and Sherriff, B.L. 1999 The Fatty Acid Composition of Native Food Plants and Animals of Western Canada. Journal of Archaeological Science 26:8394.Google Scholar
Mills, John S., and White, Raymond 1977 Natural Resins of Art and Archaeology: Their Sources, Chemistry, and Identification. Studies in Conservation 22(1):1231.Google Scholar
Monaghan, G. William, and Peebles, Christopher S. 2010 The Construction, Use, and Abandonment of Angel Site Mound A: Tracing the History of a Middle Mississippian Town through Its Earthworks. American Antiquity 75:935953.CrossRefGoogle Scholar
Mukherjee, Anna J., Gibson, Alex M., and Evershed, Richard P. 2008 Trends in Pig Product Processing at British Neolithic Grooved Ware Sites Traced through Organic Residues in Potsherds. Journal of Archaeological Science 35:20592073.CrossRefGoogle Scholar
Mulholland, S. C. 2010 Quick Scan Phytolith Analysis of Organic Residue on a Sherd from the Base of a Mississippian Jar, Angel Mounds (12vg1), Indiana. Duluth Archaeology Center. Manuscript on file, Black Glenn A. Laboratory of Archaeology, Indiana University, Bloomington.Google Scholar
Newton, Teresa J., Vaughn, Caryn C., Spooner, Daniel E., Nichols, S. Jerrine, and Arts, Michael T. 2013 Profiles of Biochemical Tracers in Unionid Mussels across a Broad Geographical Range. Journal of Shellfish Research 32:497507.CrossRefGoogle Scholar
Noack Myers, Kelsey 2012 Faunal Expectations at Angel Mounds: Revisiting Adams’ Analysis. Poster presented at the 58th Annual Meeting of the Midwest Archaeological Conference in East Lansing, Michigan.Google Scholar
Olsson, Monika, and Isaksson, Sven 2008 Molecular and Isotopic Traces of Cooking and Consumption of Fish at an Early Medieval Manor Site in Eastern Middle Sweden. Journal of Archaeological Science 35:773780.Google Scholar
Padley, Fred B., Gunstone, Frank D., and Harwood, John L. 1994 Occurrence and Characteristics of Oils and Fats. In The Lipid Handbook, edited by Gunstone, Frank D., Harwood, John L., and Padley, Fred B., pp. 49170. Chapman and Hall, London.Google Scholar
Parmalee, Paul 1961 Mussels from the Angel Site, Indiana. The Nautilus 74:7075.Google Scholar
Peterson, Staffan D. 2010 Townscape Archaeology at Angel Mounds, Indiana: Mississippian Spatiality and Community. Ph.D. Dissertation, Anthropology Department, Indiana University, Bloomington.Google Scholar
Rafferty, Sean M., Lednev, Igor, Virkler, Kelly, and Chovanec, Zuzana 2012 Current Research on Smoking Pipe Residues. Journal of Archaeological Science 39:19511959.CrossRefGoogle Scholar
Reber, Eleanora A. 2013a Residue Analysis of 7 Samples from the Audrey N Site, Illinois. Papers of the UNCW Residue Lab 18, Wilmington.Google Scholar
Reber, Eleanora A. 2013b Absorbed Residue Analysis of Pottery Sherds. In Graveline: A Late Woodland Platform Mound on the Mississippi Gulf Coast, edited by Blitz, J. and Downs, L.. Mississippi Department of Archives and History, Jackson, Mississippi.Google Scholar
Reber, Eleanora A., and Evershed, Richard P. 2004 Identification of Maize in Absorbed Organic Residues: A Cautionary Tale. Journal of Archaeological Science 31:399410.Google Scholar
Reber, Eleanora A., and Hart, John P. 2008 Pine Resins and Pottery Sealing: Analysis of Absorbed and Visible Pottery Residues from Central New York State. Archaeometry 50:9991017.CrossRefGoogle Scholar
Reber, Eleanora A., Blitz, John H., and Thompson, Claire E. 2010 Direct Determination of the Contents of a Ceramic Bottle from the Moundville Site, Alabama. Midcontinental Journal of Archaeology 35:3756.Google Scholar
Reber, Eleanora A., Dudd, Stephanie N., Van der Merwe, Nikolaas J., and Evershed, Richard P. 2004 Direct Detection of Maize Processing in Archaeological Pottery through Compound-Specific Stable Isotope Analysis of N-Dotriacontanol in Absorbed Organic Residues. Antiquity 78:682691.CrossRefGoogle Scholar
Reber, Eleanora A., and Kerr, Matthew T. 2012a Background Residues: Pottery Firing and Lipid Persistence. Paper presented at the 77th Annual Meeting of the Society for American Archaeology, Memphis, Tenessee.Google Scholar
Reber, Eleanora A., and Kerr, Matthew T. 2012b The Persistence of Caffeine in Experimentally Produced Black Drink Residues. Journal of Archaeological Science 39:23122319.CrossRefGoogle Scholar
Ribechini, Erika, Modugno, Francesca, Colombini, Maria Perla, and Evershed, Richard P. 2008 Gas Chromatographic and Mass Spectrometric Investigations of Organic Residues from Roman Glass Unguentaria. Journal of Chromatography A 1183:158169.Google Scholar
Stern, B., Connan, J., Blakelock, E., Jackman, R., Coningham, R. A. E., and Heron, C. 2008 From Susa to Anuradhapura: Reconstructing Aspects of Trade and Exchange in Bitumen-Coated Ceramic Vessels between Iran and Sri Lanka from the Third to the Ninth Centuries A.D. Archaeometry 50:409428.Google Scholar
Sun, Ming-Yi, and Wakeham, Stuart G. 1994 Molecular Evidence for Degradation and Preservation of Organic Matter in the Anoxic Black Sea Basin. Geochimica et Cosmochimica Acta 58:33953406.Google Scholar
Tissot, E., Rochat, S., Debonneville, C., and Chaintreau, A. 2012 Rapid GC-FID Quantification Technique without Authentic Samples Using Predicted Response Factors. Flavour and Fragrance Journal 27:290296.Google Scholar