Skip to main content Accessibility help
Hostname: page-component-56f9d74cfd-89lq7 Total loading time: 0.547 Render date: 2022-06-28T06:00:28.307Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Defining Best 3D Practices in Archaeology

Comparing Laser Scanning and Dense Stereo Matching Techniques for 3D Intrasite Data Recording

Published online by Cambridge University Press:  16 January 2017

Fabrizio Galeazzi
Department of Archaeology, University of York, The King’s Manor, York, UKYO1 7EP (
Holley Moyes
School of Social Sciences, Humanities and Arts, University of California, Merced, 5200 N. Lake Road, MercedCA 95343 (;
Mark Aldenderfer
School of Social Sciences, Humanities and Arts, University of California, Merced, 5200 N. Lake Road, MercedCA 95343 (;


This research aims to investigate the potential use of three-dimensional (3D) technologies for the analysis and interpretation of heritage sites. This article uses different 3D survey technologies to find the most appropriate methods to document archaeological stratigraphy, based on diverse environmental conditions, light exposures, and varied surfaces. The use of 3D laser scanners and dense stereo matching (DSM) techniques is now well established in archaeology. However, no convincing comparisons between those techniques have been presented. This research fills this gap to provide an accurate data assessment for the Las Cuevas site (Belize) and represents a starting point for the definition of a sharable methodology. Tests in Las Cuevas were conducted to compare both accuracy and density reliability in cave environments using two different techniques: triangulation light laser scanner and DSM. This study finds that DSM is the most economical, portable, and flexible approach for the 3D documentation of archaeological sites today. In fact, DSM allows the 3D documentation process to be done more efficiently, reducing both data acquisition and processing time. Nonetheless, the quantitative comparison presented in this paper underscores the need to integrate this technique with other technologies when the data acquisition of micro-stratigraphy is required.

Este ensayo analiza la potencialidad de las tecnologías 3D para el análisis e interpretación del patrimonio histórico y cultural. Este trabajo usa diferentes técnicas 3D con el fin de encontrar los métodos más apropiados para documentar la estratigrafía arqueológica, basados en diversas condiciones ambientales, exposición a la luz y variedad de superficies. A pesar de que actualmente se ha establecido el uso de las técnicas de laser escáner 3D y de la técnica fotogramétrica (DSM) “dense stereo matching” en el campo arqueológico, considero no convincentes las comparaciones que se han hecho hasta el presente entre estas dos técnicas. Esta investigación colma este vacío proveyendo una detallada evaluación de los datos de los asentamientos arqueológicos de Las Cuevas (Belize) y representa un punto de partida concreto hacia la definición de una metodología compartible. Utilizando dos técnicas diferentes, la triangulación de la luz del escáner láser y DSM, se hicieron análisis en Las Cuevas para comparar la precisión y la fiabilidad de densidad en entornos rupestres. Este estudio encontró que el DSM es más económico, portátil, y flexible para la documentación 3D de sitios arqueológicos en la actualidad. De hecho, el DSM permite el proceso de documentación 3D reduciendo tanto la adquisición de datos como el tiempo del proceso. No obstante la comparación cuantitativa presentada en este ensayo, cabe subrayar la necesidad de integrar dicha técnica con otras tecnologías, cuando la adquisición de datos requiere una micro estratigrafía

Research Article
Copyright © Society for American Archaeology 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Addison, Alonso C. 2008 The Vanishing Virtual. Safeguarding Heritage’s Endangered Digital Record. In New Heritage: New Media and Cultural Heritage, edited by Kalay, Yehuda E., Kvan, Thomas, and Affleck, Janice, pp. 4052. Routledge, New York.Google Scholar
Agisoft LLC 2011 Photoscan: An Advanced Image-based 3D Modeling Solution for Creating Professional Quality 3D Content from Still Images. Electronic document,, accessed April 15, 2014.Google Scholar
Aimers, Jaime 2007 What May Collapse? Terminal Classic Variation in the Maya Lowlands. Journal of Archaeological Research 15:329377.CrossRefGoogle Scholar
Anderson, A. Hamilton 1962 Cave Sites in British Honduras. In Akten des XXXIV Internationalen Amerikanisten- Kongresses pp. 326331. Verlag Ernest Berger, Horn, Vienna.Google Scholar
Becker, Marshall J. 2003 Plaza Plans at Tikal: A Research Strategy for Inferring Social Organization and Processes of Culture Change at Lowland Maya Sites. In Tikal: Dynasties, Foreigners, and Affairs of State, edited by Sabloff, Jeremy A., pp. 253280. School of American Research, Press Santa Fe.Google Scholar
Callieri, Marco, Cignoni, Paolo, Corsini, Massimiliano, and Scopigno, Roberto 2008 Masked Photo Blending: Mapping Dense Photographic Dataset on High-Resolution 3D Models. Computer & Graphics 32:464473.CrossRefGoogle Scholar
Callieri, Marco, Dell’Unto, Nicolò, Dellepiane, Matteo, Scopigno, Roberto, Sodeberg, Bengt, and Larson, Lars 2011 Documentation and Interpretation of an Archaeological Excavation: An Experience with Dense Stereo Reconstruction Tools. In Proceedings of VAST 2011—The 12th International Symposium on Virtual Reality, Archaeology and Cultural Heritage, edited by Dellepiane, Matteo, Nicolucci, Franco, Serna, Sebastian Pena, Rushmeier, Holley, and Gool, Luc Van, pp. 3340. Eurographics Association, Geneva.Google Scholar
Chase, Arlen F., Chase, Diane Z., Weishampel, John F., Drake, Jason B., Shrestha, Ramesh L., Slatton, K. Clint, Awe, Jaime J., and Carter, William E. 2011 Airborne LiDAR, Archaeology, and the Ancient Maya Landscape at Caracol, Belize. Journal of Archaeological Science 38:387398.CrossRefGoogle Scholar
Craig, Nathan, Aldenderfer, Mark, and Moyes, Holley 2006 Multivariate Visualization and Analysis of Photomapped Artifact Scatters. Journal of Archaeological Science 33:16171627.CrossRefGoogle Scholar
Dellepiane, Matteo, Dell’Unto, Nicolò, Callieri, Marco, Lindgren, Stephan, and Scopigno, Roberto 2012 Archaeological Excavation Monitoring Using Dense Stereo Matching Techniques. Journal of Cultural Heritage 14:201210.CrossRefGoogle Scholar
Dell’Unto, Nicolò, Galeazzi, Fabrizio, and Ioia, Marco Di 2006 Via Flaminia Project: Relief and Post Processing Data Techniques. In From Space to Place, edited by Campan, Stefano and Forte, Maurizio, pp. 523528. BAR International Series 1568, Oxford.Google Scholar
Dell’Unto, Nicolò, Ioia, Marco Di, Galeazzi, Fabrizio, Moro, Alessia, and Trabassi, Bartolomeo 2008 I rilievi tridimensionali. In La villa di Livia, un percorso di ricerca di archeologia virtuale, edited by Forte, Maurizio, pp. 120128. Erma di Bretschneider, Roma.Google Scholar
Demarest, Arthur A., Rice, Prudence M., and Rice, Don S. 2004 The Terminal Classic in the Maya Lowlands: Assessing Collapse, Transition, and Transformation. In The Terminal Classic in the Maya Lowlands: Collapse, Transition, and Transformation, edited by Demarest, Arthur A., Rice, Prudence M., and Rice, Don S., pp. 545572. University Press of Colorado, Boulder.Google Scholar
Digby, Adrian 1958 A New Maya City Discovered in British Honduras: First Excavations at Las Cuevas, An Underground Necropolis Revealed. The Illustrated London News 232:274275.Google Scholar
Di Franco, Di Giuseppantonio, Paola, Fabrizio Galeazzi, and Camporesi, Carlo 2012 3D Virtual Dig: A 3D Application for Teaching Fieldwork in Archaeology. Internet Archaeology Journal 32.Google Scholar
Doneus, Michael, Verhoeven, Geert, Fera, Martin, Briese, Christian, Kucera, Matthias, and Neubauer, Wolfgang 2011 From Deposit to Point Cloud: A Study of Low-cost Computer Vision Approaches for the Straightforward Documentation of Archaeological Excavations. Geoinformatics 6:8188.Google Scholar
Fröhlich, Christofer, and Mettenleiter, Markus 2004 Terrestrial Laser Scanning—New Perspectives in 3D Surveying. International Archives of Photogrammetry, Remote Sensing Spatial Information Sciences 36:713.Google Scholar
de Balestrini, Fratus,Elena, and Guerra, Francesco 2011 New Instruments for Survey: On-line Softwares for 3D Reconstruction from Images. International Archives of Photogrammetry, Remote Sensing Spatial Information Sciences 38:545552.Google Scholar
Galeazzi, Fabrizio, Ioia, Marco Di, Dell’Unto, Nicolò, Dettori, Domingo, and Liscia, Giovanna 2007 Scavo, ricostruzione e musealizzazione del sito archeologico di Santa Maria di Tergu. In E-ARCOM. Sistemi informativi per l’architettura 45. Alinea Editore, Florence.Google Scholar
Galeazzi, Fabrizio, Di Franco, Di Giuseppantonio Paola, and Dell’Unto, Nicolò 2010 3D Cybermaps of Western Han Mural Tombs. In Cyber-Archaeology, edited by Forte, Maurizio, pp. 97108. BAR International Series 2177, Oxford.Google Scholar
Gifford, James C. 1976 Prehistoric Pottery Analysis and the Ceramics of Barton Ramie in the Belize Valley. Papers of the Peabody Museum of Archaeology and Ethnology 18. Harvard University Press, Cambridge, Massachusetts.Google Scholar
Güth, Alexandra 2012 Using 3D Scanning in the Investigation of Upper Palaeolithic Engravings: First Results of a Pilot Study. Journal of Archaeological Science 39:31053114.CrossRefGoogle Scholar
Iannone, Gyles 2004 “Minor Centers” in Maya Archaeology. In The Ancient Maya of the Belize Valley: Half a Century of Archaeological Research, edited by Garber, James F., pp. 273286. University Press of Florida, Gainesville.Google Scholar
Koch, Marko, and Kaehler, Martin 2009 Combining 3D Laser-Scanning and Close-Range Photogrammetry. An Approach to Exploit the Strength of Both Methods. In Making History Interactive. Computer Application and Quantitative methods in Archaeology (CAA): Proceedings of the 37th International Conference, Williamsburg, Virginia, USA, March 22–26, 2009, edited by Frischer, Bernard, Crawford, Jane W., and Koller, David. Electronic document,, accessed March 12, 2014.Google Scholar
Lerma, José L., Navarro, Santiago, Cabrelles, Miriam, and Villaverde, Valentín 2010 Terrestrial Laser Scanning and Close Range Photogrammetry for 3D Archaeological Documentation: The Upper Palaeolithic Cave of Parpallo´ as a Case Study. Journal of Archaeological Science 37:499507.CrossRefGoogle Scholar
McPherron, Shannon P., Gernat, Tim, and Hublin, Jean-Jacques 2009 Structured Light Scanning for High-resolution Documentation of in situ Archaeological Finds. Journal of Archaeological Science 36:1924.CrossRefGoogle Scholar
Meshlab 2014 Meshlab. Electronic document,, accessed June 20, 2014.Google Scholar
Moyes, Holley, Robinson, Mark, Kosakowsky, Laura, Voorhies, Barbara, Guerra, Rafael, Galeazzi, Fabrizio, and Ramos, Josué 2011 Sleeping Next to the Giant: Preliminary Investigations of the Las Cuevas Site, Chiquibul Reserve, Belize: A Site Report of the 2011 Field Season. Report on file at The Institute of Archaeology, National Institute of Culture and History, Belmopan, Belize.Google Scholar
Moyes, Holley, and Brady, James E. 2012 Caves as Sacred Space in Mesoamerica. In Sacred Darkness: A Global Perspective on the Ritual Use of Caves, edited by Moyes, Holley, pp. 151170. University Press of Colorado, Boulder.Google Scholar
Moyes, Holley, Kosakowsky, Laura, Robinson, Mark, and Voorhies, Barbara 2012 Better Late Than Never: Preliminary Investigations at Las Cuevas. Research Reports in Belizean Archaeology 9:221232.Google Scholar
Neubauer, Wolfang, Doneus, Michael, Studnicka, Nikolaus, and Riegl, Jeffrey 2005 Combined High Resolution Laser Scanning and Photogrammetrical Documentation of the Pyramids at Giza. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 36:470475.Google Scholar
Pierrot-Deseilligny, Marc, De Luca, Livio, and Remondino, Fabio 2011 Automated Image-Based Procedures for Accurate Artifacts 3D Modeling and Orthoimage Generation. Geoinformatics FCE CTU Journal 6:291299.CrossRefGoogle Scholar
Remondino, Fabio, and El-Hakim, Sabry 2006 Image-Based 3D Modelling: A Review. The Photogrammetric Record 21:269291.CrossRefGoogle Scholar
Rapidform 2014 Rapidform. Electronic document,, accessed June 20, 2014.Google Scholar
Sanz, Juan O., Docampo, Maria de la Luz G., Rodríguez, Santiago M., Sanmartín, María T. R., and Cameselle, Gonzalo M. 2010 A Simple Methodology for Recording Petroglyphs Using Low-Cost Digital Image Correlation Photogrammetry and Consumer-grade Digital Cameras. Journal of Archaeological Science 37:31583169.CrossRefGoogle Scholar
Zubrow, Ezra B. W. 2006 Digital Archaeology: A Historical Context. In Digital Archaeology, edited by Evans, Thomas L., and Daly, Patrick, pp. 1031. Routledge, London and New York.Google Scholar
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Defining Best 3D Practices in Archaeology
Available formats

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Defining Best 3D Practices in Archaeology
Available formats

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Defining Best 3D Practices in Archaeology
Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *