Skip to main content Accessibility help
×
Home
Hostname: page-component-747cfc64b6-5dv6l Total loading time: 0.568 Render date: 2021-06-13T20:47:45.728Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

On Classes of Equivalence and Identifiability of Age-Dependent Branching Processes

Published online by Cambridge University Press:  22 February 2016

Rui Chen
Affiliation:
University of Rochester
Ollivier Hyrien
Affiliation:
University of Rochester
Rights & Permissions[Opens in a new window]

Abstract

Age-dependent branching processes are increasingly used in analyses of biological data. Despite being central to most statistical procedures, the identifiability of these models has not been studied. In this paper we partition a family of age-dependent branching processes into equivalence classes over which the distribution of the population size remains identical. This result can be used to study identifiability of the offspring and lifespan distributions for parametric families of branching processes. For example, we identify classes of Markov processes that are not identifiable. We show that age-dependent processes with (nonexponential) gamma-distributed lifespans are identifiable and that Smith-Martin processes are not always identifiable.

Type
General Applied Probability
Copyright
© Applied Probability Trust 

References

Gyllenberg, M. and Webb, G. F. (1990). A nonlinear structured population model of tumor growth with quiescence. J. Math. Biol. 28, 671694.CrossRefGoogle ScholarPubMed
Haccou, P., Jagers, P. and Vatutin, V. A. (2007). Branching Processes: Variation, Growth, and Extinction of Populations. Cambridge University Press.Google Scholar
Hyrien, O., Mayer-Pröschel, M., Noble, M. and Yakovlev, A. (2005). A stochastic model to analyze clonal data on multi-type cell populations. Biometrics 61, 199207.CrossRefGoogle ScholarPubMed
Jagers, P. (1975). Branching Processes with Biological Applications. John Wiley, London.Google Scholar
Kimmel, M. and Axelrod, D. E. (2002). Branching Processes in Biology. Springer, New York.CrossRefGoogle Scholar
Redner, R. (1981). Note on the consistency of the maximum likelihood estimate for nonidentifiable distributions. Ann. Statist. 9, 225228.CrossRefGoogle Scholar
Sevastyanov, B. A. (1971). Branching Processes. Nauka, Moscow (in Russian).Google Scholar
Smith, J. A. and Martin, L. (1973). Do cells cycle? Proc. Nat. Acad. Sci. 70, 12631267.CrossRefGoogle ScholarPubMed
Yakovlev, A. Y. and Yanev, N. M. (1989). Transient Processes in Cell Proliferation Kinetics. Springer, Berlin.CrossRefGoogle Scholar
You have Access

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

On Classes of Equivalence and Identifiability of Age-Dependent Branching Processes
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

On Classes of Equivalence and Identifiability of Age-Dependent Branching Processes
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

On Classes of Equivalence and Identifiability of Age-Dependent Branching Processes
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *