Hostname: page-component-5c6d5d7d68-vt8vv Total loading time: 0.001 Render date: 2024-08-15T22:53:45.761Z Has data issue: false hasContentIssue false

Martingale central limit theorems and asymptotic estimation theory for multitype branching processes

Published online by Cambridge University Press:  01 July 2016

Søren Asmussen
Affiliation:
University of Copenhagen
Niels Keiding
Affiliation:
University of Copenhagen

Abstract

This paper considers the problem of estimating the growth rate ρ of a p-type Galton–Watson process {Zn}. To this end, a general approach of possible independent interest to central limit theorems for discrete-time branching processes is developed. The idea is to adapt martingale central limit theory to martingale difference triangular arrays indexed by the set of all individuals ever alive. Iterated logarithm laws are derived by similar methods. Asymptotic distribution results and the a.s. asymptotic behaviour are derived for a maximum likelihood estimator based upon all parent–offspring combinations in a given number N of generations, and for the estimator which depends on the total generation sizes only.

Type
Research Article
Copyright
Copyright © Applied Probability Trust 1978 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asmussen, S. (1977) Almost sure behaviour of linear functionals of supercritical branching processes. Trans. Amer. Math. Soc. 231, 233248.Google Scholar
Athreya, K. B. (1969a) Limit theorems for multitype continuous time Markov branching processes. I. The case of an eigenvector linear functional. Z. Wahrscheinlichkeitsth. 12, 320332.Google Scholar
Athreya, K. B. (1969b) Limit theorems for multitype continuous time Markov branching processes. II. The case of an arbitrary linear functional. Z. Wahrscheinlichkeitsth. 13, 204214.Google Scholar
Athreya, K. B. (1971) Some refinements in the theory of supercritical multitype Markov branching processes. Z. Wahrscheinlichkeitsth. 20, 4757.CrossRefGoogle Scholar
Athreya, K. B. and Keiding, N. (1975). Estimation theory for continuous-time branching processes. Preprint No. 6, Inst. Math. Statist., Univ. Copenhagen. Sankhyã A. To appear.Google Scholar
Athreya, K. B. and Ney, P. E. (1972) Branching Processes. Springer, Berlin.Google Scholar
Becker, N. (1977) Estimation for a Galton–Watson process with application to epidemics. Biometrics 33. To appear.Google Scholar
Brown, B. M. (1971) Martingale central limit theorems. Ann. Math. Statist. 42, 5966.CrossRefGoogle Scholar
Dion, J.-P. (1972) Estimation des Probabilités Initiales et de la Moyenne d'un Processus de Galton–Watson. Thèse de doctorat, Université de Montréal.Google Scholar
Dion, J.–P. (1974) Estimation of the mean and the initial probabilities of a branching process. J. Appl. Prob. 11, 687694.Google Scholar
Dion, J.–P. (1975) Estimation of the variance of a branching process. Ann. Statist. 3, 11831187.Google Scholar
Dvoretzky, A. (1972) Asymptotic normality for sums of dependent random variables. Proc. Sixth Berk. Symp. Math. Statist. Prob. 2, 513535.Google Scholar
Harris, T. E. (1948) Branching processes. Ann. Math. Statist. 19, 474494.Google Scholar
Harris, T. E. (1963) The Theory of Branching Processes. Springer, Berlin.Google Scholar
Heyde, C. C. (1970) Extension of a result of Seneta for the supercritical Galton–Watson process. Ann. Math. Statist. 41, 739742.Google Scholar
Heyde, C. C. (1975) On estimating the variance of the offspring distribution in a simple branching process. Adv. Appl. Prob. 6, 421433.CrossRefGoogle Scholar
Heyde, C. C. and Leslie, J. R. (1971) Improved classical limit analogues for Galton–Watson processes with or without immigration. Bull. Austral. Math. Soc. 5, 145155.Google Scholar
Hoel, D. G. and Crump, K. S. (1974) Estimating the generation-time distribution of an age-dependent branching process. Biometrics 30, 125135.CrossRefGoogle ScholarPubMed
Jagers, P. (1973) A limit thorem for sums of random numbers of i.i.d. random variables. In Mathematics and Statistics, Essays in honour of Harald Bergström, ed. Jagers, P. and Råde, L. Göteborg, 3339.Google Scholar
Jagers, P. (1975) Branching Processes with Biological Applications. Wiley, New York.Google Scholar
Keiding, N. and Lauritzen, S. L. (1978) Marginal maximum likelihood estimates and estimation of the offspring mean in a branching process. Scand. J. Statist. 5. To appear.Google Scholar
Kendall, D. G. (1948) On the role of variable generation time in the development of a stochastic birth process. Biometrika 35, 316330.Google Scholar
Kesten, H. and Stigum, B. P. (1966) Additional limit theorems for indecomposable multidimensional Galton–Watson processes. Ann. Math. Statist. 37, 14631481.CrossRefGoogle Scholar
Lévy, P. (1954) Théorie de l'Addition des Variables Aléatoires, Deuxième édition. Gauthier–Villars, Paris.Google Scholar
McLeish, D. L. (1974) Dependent central limit theorems and invariance principles. Ann. Prob. 2, 620628.Google Scholar
Neveu, J. (1972) Martingales à Temps Discret. Masson, Paris.Google Scholar
Quine, M. P. and Durham, P. (1977) Estimation for multitype branching processes. Manuscript, University of Sydney.Google Scholar
Yanev, N. M. (1975) On the statistics of branching processes. Theory Prob. Appl. 20, 612622.Google Scholar