Skip to main content Accessibility help
×
Home
Hostname: page-component-747cfc64b6-nq4kt Total loading time: 1.2 Render date: 2021-06-13T13:01:09.988Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

The total time on test transform and the excess wealth stochastic orders of distributions

Published online by Cambridge University Press:  01 July 2016

Subhash C. Kochar
Affiliation:
Indian Statistical Institute
Xiaohu Li
Affiliation:
Lanzhou University
Moshe Shaked
Affiliation:
University of Arizona
Corresponding
E-mail address:

Abstract

For nonnegative random variables X and Y we write XTTT Y if ∫0 F -1(p)(1-F(x))dx ≤ ∫0 G -1(p)(1-G(x))dx all p ∈ (0,1), where F and G denote the distribution functions of X and Y respectively. The purpose of this article is to study some properties of this new stochastic order. New properties of the excess wealth (or right-spread) order, and of other related stochastic orders, are also obtained. Applications in the statistical theory of reliability and in economics are included.

Type
General Applied Probability
Copyright
Copyright © Applied Probability Trust 2002 

Access options

Get access to the full version of this content by using one of the access options below.

Footnotes

Supported by NSFC under grants TY 10126014 and 10201010.

References

Barlow, R. E. (1979). Geometry of the total time on test transform. Naval Res. Logistics Quart. 26, 393402.CrossRefGoogle Scholar
Barlow, R. E. and Campo, R. (1975). Total time on test processes and applications to failure data analysis. In Reliability and Fault Tree Analysis, eds Barlow, R. E., Fussell, J. B. and Singpurwalla, N. D., SIAM, Philadelphia, pp. 451481.Google Scholar
Barlow, R. E. and Doksum, K. A. (1972). Isotonic tests for convex orderings. In Proc. 6th Berkeley Symp. Math. Statist. Prob., Vol. I, eds Le Cam, L. M., Neyman, J. and Scott, E. L., University of California Press, Berkeley, pp. 293323.Google Scholar
Barlow, R. E. and Proschan, F. (1975). Statistical Theory of Reliability and Life Testing: Probability Models. Holt, Rinehart and Winston, New York.Google Scholar
Barlow, R. E., Bartholomew, D. J., Bremner, J. M. and Brunk, H. D. (1972). Statistical Inference Under Order Restrictions. John Wiley, New York.Google Scholar
Bartoszewicz, J. (1985). Moment inequalities for order statistics from ordered families of distributions. Metrika 32, 383389.CrossRefGoogle Scholar
Bartoszewicz, J. (1986). Dispersive ordering and the total time on test transformation. Statist. Prob. Lett. 4, 285288.CrossRefGoogle Scholar
Bartoszewicz, J. (1995). Stochastic order relations and the total time on test transform. Statist. Prob. Lett. 22, 103110.CrossRefGoogle Scholar
Bartoszewicz, J. (1998). Applications of a general composition theorem to the star order of distributions. Statist. Prob. Lett. 38, 19.CrossRefGoogle Scholar
Belzunce, F. (1999). On a characterization of right-spread order by the increasing convex order. Statist. Prob. Lett. 45, 103110.CrossRefGoogle Scholar
Bergman, B. (1979). On age replacement and the total time on test concept. Scand. J. Statist. 6, 161168.Google Scholar
Bhattacharjee, M. C. and Krishnaji, N. (1984). DFR and other heavy tail properties in modelling the distribution of land and some alternative measures of inequality. In Statistics: Applications and New Directions, eds Ghosh, J. K. and Roy, J., Indian Statistical Institute, Calcutta, pp. 100115.Google Scholar
Fagiuoli, E., Pellerey, F. and Shaked, M. (1999). A characterization of the dilation order and its applications. Statist. Papers 40, 393406.CrossRefGoogle Scholar
Fernandez-Ponce, J. M., Kochar, S. C. and Muñoz-Perez, J. (1998). Partial orderings of distributions based on right-spread functions. J. Appl. Prob. 35, 221228.CrossRefGoogle Scholar
Gerlach, B. (1988). A new test for whether (F) is ‘more NBU’ than (G). Metrika 17, 7986.Google Scholar
Hollander, M. and Proschan, F. (1975). Tests for mean residual life. Biometrika 62, 585593.CrossRefGoogle Scholar
Høyland, A. and Rausand, M. (1994). System Reliability Theory: Models and Statistical Methods. John Wiley, New York.Google Scholar
Hürlimann, W., (2002). Analytical evaluation of economic risk capital for portfolios of gamma risks. A unified approach to conditional value-at-risk, with application to RAROC and RARAROC. Tech. Rep., Value and Risk Management, Winterthur Life and Pensions, Winterthur, Switzerland.Google Scholar
Jewitt, I. (1989). Choosing between risky prospects: the characterization of comparative statics results, and location independent risk. Manag. Sci. 35, 6070.CrossRefGoogle Scholar
Klefsjö, B., (1983). Testing exponentiality against HNBUE. Scand. J. Statist. 10, 6575.Google Scholar
Klefsjö, B., (1984). Reliability interpretations of some concepts from economics. Naval Res. Logistics Quart. 31, 301308.CrossRefGoogle Scholar
Klefsjö, B., (1991). TTT-plotting—a tool for both theoretical and practical problems. J. Statist. Planning Infer. 29, 111124.CrossRefGoogle Scholar
Kochar, S. C. (1989). On extensions of DMRL and related partial orderings of life distributions. Commun. Statist. Stoch. Models 5, 235245.CrossRefGoogle Scholar
Kochar, S. C. and Carrière, K. C. (1997). Connections among various variability orderings. Statist. Prob. Lett. 35, 327333.CrossRefGoogle Scholar
Kochar, S. C. and Wiens, D. P. (1987). Partial orderings of life distributions with respect to their aging properties. Naval Res. Logistics 34, 823829.3.0.CO;2-R>CrossRefGoogle Scholar
Li, X., Li, Z. and Jing, B.-Y. (2000). Some results about NBUC class of life distributions. Statist. Prob. Lett. 46, 229237.CrossRefGoogle Scholar
Rojo, J. and He, G. Z. (1991). New properties and characterizations of the dispersive ordering. Statist. Prob. Lett. 11, 365372.CrossRefGoogle Scholar
Ross, S. M. (1996). Stochastic Processes, 2nd edn. John Wiley. New York.Google Scholar
Shaked, M. and Shanthikumar, J. G. (1994). Stochastic Orders and Their Applications. Academic Press, San Diego, CA.Google Scholar
Shaked, M. and Shanthikumar, J. G. (1998). Two variability orders. Prob. Eng. Inf. Sci. 12, 123.CrossRefGoogle Scholar
9
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The total time on test transform and the excess wealth stochastic orders of distributions
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

The total time on test transform and the excess wealth stochastic orders of distributions
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

The total time on test transform and the excess wealth stochastic orders of distributions
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *