Skip to main content Accessibility help
×
Home
Hostname: page-component-747cfc64b6-9ng7f Total loading time: 0.195 Render date: 2021-06-14T07:25:42.478Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Random fields of bounded variation and computation of their variation intensity

Published online by Cambridge University Press:  11 January 2017

Bruno Galerne
Affiliation:
Université Paris Descartes
Corresponding

Abstract

The main purpose of this paper is to define and characterize random fields of bounded variation, that is, random fields with sample paths in the space of functions of bounded variation, and to study their mean total variation. Simple formulas are obtained for the mean total directional variation of random fields, based on known formulas for the directional variation of deterministic functions. It is also shown that the mean variation of random fields with stationary increments is proportional to the Lebesgue measure, and an expression of the constant of proportionality, called the variation intensity, is established. This expression shows, in particular, that the variation intensity depends only on the family of two-dimensional distributions of the stationary increment random field. When restricting to random sets, the obtained results give generalizations of well-known formulas from stochastic geometry and mathematical morphology. The interest of these general results is illustrated by computing the variation intensities of several classical stationary random field and random set models, namely Gaussian random fields and excursion sets, Poisson shot noises, Boolean models, dead leaves models, and random tessellations.

Type
Research Article
Copyright
Copyright © Applied Probability Trust 2017 

Access options

Get access to the full version of this content by using one of the access options below.

References

[1] Adler, R. J. (1981). The Geometry of Random Fields, John Wiley, Chichester.Google Scholar
[2] Ambrosio, L., Fusco, N. and Pallara, D. (2000). Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press.Google Scholar
[3] Aubert, G. and Kornprobst, G. (2006). Mathematical Problems in Image Processing (Appl. Math. Sci. 147), 2nd edn. Springer, New York.Google Scholar
[4] Azaïs, J.-M. and Wschebor, M. (2009). Level Sets and Extrema of Random Processes and Fields. John Wiley, Hoboken, NJ.CrossRefGoogle Scholar
[5] Biermé, H. and Desolneux, A. (2016). On the perimeter of excursion sets of shot noise random fields. Ann. Prob. 44, 521543 .CrossRefGoogle Scholar
[6] Biermé, H., Meerschaert, M. M. and Scheffler, H.-P. (2007). Operator scaling stable random fields. Stoch. Process. Appl. 117, 312332.CrossRefGoogle Scholar
[7] Bordenave, C., Gousseau, Y. and Roueff, F. (2006). The dead leaves model: a general tessellation modeling occlusion. Adv. Appl. Prob. 38, 3146.CrossRefGoogle Scholar
[8] Chlebík, M. (1997). On variation of sets. Preprint. 44, Max-Planck-Institut für Mathematik in den Naturwissenschaften, Leipzig.Google Scholar
[9] Cowan, R. and Tsang, A. K. L. (1994). The falling-leaves mosaic and its equilibrium properties. Adv. Appl. Prob. 26, 5462.CrossRefGoogle Scholar
[10] Galerne, B. (2011). Computation of the perimeter of measurable sets via their covariogram. Applications to random sets. Image Anal. Stereol. 30, 3951.CrossRefGoogle Scholar
[11] Galerne, B. and Gousseau, Y. (2012). The transparent dead leaves model. Adv. Appl. Prob. 44, 120.CrossRefGoogle Scholar
[12] Galerne, B. and Lachièze-Rey, R. (2015). Random measurable sets and covariogram realizability problems. Adv. Appl. Prob. 47, 611639.CrossRefGoogle Scholar
[13] Gikhman, I. I. and Skorokhod, A. V. (1974). The Theory of Stochastic Processes. I. Springer, Berlin.Google Scholar
[14] Hug, D., Last, G. and Weil, W. (2004). A local Steiner-type formula for general closed sets and applications. Math. Z. 246, 237272.CrossRefGoogle Scholar
[15] Ibragimov, I. A. (1995). Remarks on variations of random fields. J. Math. Sci. 75, 19311934.CrossRefGoogle Scholar
[16] Jeulin, D. (1997). Dead leaves models: from space tessellation to random functions. In Proceedings of the International Symposium on Advances in Theory and Applications of Random Sets, World Scientific, River Edge, NJ, pp.137156.CrossRefGoogle Scholar
[17] Kingman, J. F. C. (1993). Poisson Processes (Oxford Studies Prob. 3). Oxford University Press.Google Scholar
[18] Lantuéjoul, C. (2002). Geostatistical Simulation: Models and Algorithms. Springer, Berlin.CrossRefGoogle Scholar
[19] Matheron, G. (1975). Random Sets and Integral Geometry. John Wiley, New York.Google Scholar
[20] Meyer, Y. (2001). Oscillating Patterns in Image Processing and Nonlinear Evolution Equations (Univ. Lecture Ser. 22). American Mathematical Society, Providence, RI.CrossRefGoogle Scholar
[21] Molchanov, I. (2005). Theory of Random Sets. Springer, London.Google Scholar
[22] Rataj, J. (2015). Random sets of finite perimeter. Math. Nachr. 288, 10471056.CrossRefGoogle Scholar
[23] Rudin, L. I., Osher, S. and Fatemi, E. (1992). Nonlinear total variation based noise removal algorithms. Physica D 60, 259268.CrossRefGoogle Scholar
[24] Scheuerer, M. (2010). Regularity of the sample paths of a general second order random field. Stoch. Process. Appl. 120, 18791897.CrossRefGoogle Scholar
[25] Schneider, R. and Weil, W. (2008). Stochastic and Integral Geometry. Springer, Berlin.CrossRefGoogle Scholar
[26] Serra, J. (1982). Image Analysis and Mathematical Morphology. Academic Press, London.Google Scholar
[27] Serra, J. (ed.) (1988). Image Analysis and Mathematical Morphology, Vol. 2, Theoretical Advances. Academic Press, London.Google ScholarPubMed
[28] Stoyan, D. (1986). On generalized planar random tessellations. Math. Nachr. 128, 215219.CrossRefGoogle Scholar
[29] Stoyan, D., Kendall, W. S. and mecke, J. (1995). Stochastic Geometry and Its Applications, 2nd edn. John Wiley, Chichester.Google Scholar
[30] Villa, E. (2009). On the outer Minkowski content of sets. Ann. Mat. Pura Appl. (4) 188, 619630.CrossRefGoogle Scholar
[31] Villa, E. (2010). Mean densities and spherical contact distribution function of inhomogeneous Boolean models. Stoch. Anal. Appl. 28, 480504.CrossRefGoogle Scholar
1
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Random fields of bounded variation and computation of their variation intensity
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Random fields of bounded variation and computation of their variation intensity
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Random fields of bounded variation and computation of their variation intensity
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *