Skip to main content Accessibility help
×
Home
Hostname: page-component-747cfc64b6-5dv6l Total loading time: 0.14 Render date: 2021-06-17T17:30:57.739Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Maintaining a grade or age structure in a stochastic environment

Published online by Cambridge University Press:  01 July 2016

D. J. Bartholomew
Affiliation:
London School of Economics and Political Science

Abstract

Grade and age structures in manpower systems are often far from ideal. This fact raises the question of how the flows of people — and particularly the recruitment flow — should be controlled in order to attain and maintain a more desirable structure. The problem has received considerable attention from a deterministic point of view. This paper adopts a stochastic approach to the study of maintainability and shows, among other things, that the problem is more subtle than the deterministic analysis suggests.

Type
Research Article
Copyright
Copyright © Applied Probability Trust 1977 

Access options

Get access to the full version of this content by using one of the access options below.

References

Bartholomew, D. J. (1973) Stochastic Models for Social Processes, 2nd edn. Wiley, Chichester.Google Scholar
Bartholomew, D. J. (1975) A stochastic control problem in the social sciences. Invited paper at the meeting of the International Statistical Institute, Warsaw 1975 (to appear in the Bulletin with discussion).Google Scholar
Davies, G. S. (1973) Structural control in a graded manpower system. Man. Sci. 20, 7684.CrossRefGoogle Scholar
Davies, G. S. (1975) Maintainability of structures in Markov chain models under recruitment control. J. Appl. Prob. 12, 376382.CrossRefGoogle Scholar
Grinold, R. C. and Stanford, R. E. (1974) Optimal control of a graded manpower system. Man. Sci. 20, 12011216.CrossRefGoogle Scholar
Milton, R. C. (1972) Computer evaluation of the multivariate normal integral. Technometrics 14, 881889.CrossRefGoogle Scholar
11
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Maintaining a grade or age structure in a stochastic environment
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Maintaining a grade or age structure in a stochastic environment
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Maintaining a grade or age structure in a stochastic environment
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *