Skip to main content Accessibility help
×
Home
Hostname: page-component-747cfc64b6-9ng7f Total loading time: 0.13 Render date: 2021-06-17T18:36:05.454Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Ergodicity of age structure in populations with Markovian vital rates. II. General states

Published online by Cambridge University Press:  01 July 2016

Joel E. Cohen
Affiliation:
The Rockefeller University, New York

Abstract

The age structure of a large, unisexual, closed population is described here by a vector of the proportions in each age class. Non-negative matrices of age-specific birth and death rates, called Leslie matrices, map the age structure at one point in discrete time into the age structure at the next. If the sequence of Leslie matrices applied to a population is a sample path of an ergodic Markov chain, then: (i) the joint process consisting of the age structure vector and the Leslie matrix which produced that age structure is a Markov chain with explicit transition function; (ii) the joint distribution of age structure and Leslie matrix becomes independent of initial age structure and of the initial distribution of the Leslie matrix after a long time; (iii) when the Markov chain governing the Leslie matrix is homogeneous, the joint distribution in (ii) approaches a limit which may be easily calculated as the solution of a renewal equation. A numerical example will be given in Cohen (1977).

Type
Research Article
Copyright
Copyright © Applied Probability Trust 1977 

Access options

Get access to the full version of this content by using one of the access options below.

References

Billingsley, P. (1968) Convergence of Probability Measures. Wiley, New York.Google Scholar
Billingsley, P. and Tops⊘e, F. (1967) Uniformity in weak convergence. Z. Wahrscheinlichkeitsth. 7, 116.CrossRefGoogle Scholar
Blumenthal, R. M. and Getoor, R. K. (1968) Markov Processes and Potential Theory. Academic Press, New York.Google Scholar
Brass, W. (1974) Perspectives in population prediction: illustrated by the statistics of England and Wales. J. R. Statist. Soc. A 137, 532583.Google Scholar
Cohen, J. E. (1976) Ergodicity of age structure in populations with Markovian vital rates. I. Countable states. J. Amer. Statist. Assoc. 71, 335339.CrossRefGoogle Scholar
Cohen, J. E. (1977) Ergodicity of age structure in populations with Markovian vital rates. III. Mean and approximate variance. Adv. Appl. Prob. 9 (3).CrossRefGoogle Scholar
Dobrushin, R. L. (1956) Central limit theorem for nonstationary Markov chains. I, II. Theor. Prob. Appl. 1, 6579, 329–383.CrossRefGoogle Scholar
Dunford, N. and Schwartz, J. T. (1958) Linear Operators. I: General Theory. Interscience, New York.Google Scholar
Golubitsky, M., Keeler, E. B. and Rothschild, M. (1975) Convergence of the age-structure: applications of the projective method. Theoret. Pop. Biol. 7, 8493.CrossRefGoogle Scholar
Griffeath, D. (1975) A maximal coupling for Markov chains. Z. Wahrscheinlichkeitsth. 31, 95106.CrossRefGoogle Scholar
Hajnal, J. (1956) The ergodic properties of nonhomogeneous finite Markov chains. Proc. Camb. Phil. Soc. 52, 6777.CrossRefGoogle Scholar
Hajnal, J. (1958) Weak ergodicity in nonhomogeneous Markov chains. Proc. Camb. Phil. Soc. 54, 233246.CrossRefGoogle Scholar
Hajnal, J. (1976) On products of non-negative matrices. Math. Proc. Camb. Phil. Soc. 79, 521530.CrossRefGoogle Scholar
Kelley, J. L. (1955) General Topology. Van Nostrand, Princeton, N.J.Google Scholar
Kingman, J. F. C. and Taylor, S. J. (1966) Introduction to Measure and Probability. Cambridge University Press.CrossRefGoogle Scholar
Loève, M. (1963) Probability Theory, 3rd edn. Van Nostrand, Princeton, N.J. Google Scholar
Pitman, J. W. (1974) Uniform rates of convergence for Markov chain transition probabilities. Z. Wahrscheinlichkeitsth. 29, 193227.CrossRefGoogle Scholar
Takahashi, Y. (1969) Markov chains with random transition matrices. Kodai Math. Seminar Rep. 21, 426447.CrossRefGoogle Scholar
11
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Ergodicity of age structure in populations with Markovian vital rates. II. General states
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Ergodicity of age structure in populations with Markovian vital rates. II. General states
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Ergodicity of age structure in populations with Markovian vital rates. II. General states
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *