Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-17T19:04:16.981Z Has data issue: false hasContentIssue false

Convergence of the height process of supercritical Galton–Watson forests with an application to the configuration model in the critical window

Published online by Cambridge University Press:  02 April 2024

Serte Donderwinkel*
McGill University
*Postal address: Burnside Hall, 805 Sherbrooke Street West, Montréal, Quebec H3A 0B9, Canada. Email address:


We show joint convergence of the Łukasiewicz path and height process for slightly supercritical Galton–Watson forests. This shows that the height processes for supercritical continuous-state branching processes as constructed by Lambert (2002) are the limit under rescaling of their discrete counterparts. Unlike for (sub-)critical Galton–Watson forests, the height process does not encode the entire metric structure of a supercritical Galton–Watson forest. We demonstrate that this result is nonetheless useful, by applying it to the configuration model with an independent and identically distributed power-law degree sequence in the critical window, of which we obtain the metric space scaling limit in the product Gromov–Hausdorff–Prokhorov topology, which is of independent interest.

Original Article
© The Author(s), 2024. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Abraham, R. and Delmas, J.-F. (2012). A continuum-tree-valued Markov process. Ann. Prob. 40, 11671211.CrossRefGoogle Scholar
Abraham, R., Delmas, J.-F. and He, H. (2015). Pruning of CRT-sub-trees. Stoch. Process. Appl. 125, 15691604.CrossRefGoogle Scholar
Addario-Berry, L., Broutin, N., Goldschmidt, C. and Miermont, G. (2017). The scaling limit of the minimum spanning tree of the complete graph. Ann. Prob. 45, 30753144.CrossRefGoogle Scholar
Aldous, D. (1991). The continuum random tree II: an overview. In Stochastic Analysis, eds Barlow, M. T. and Bingham, N. H., Cambridge University Press, pp. 23–70.CrossRefGoogle Scholar
Aldous, D. (1993). The continuum random tree III. Ann. Prob. 21, 248289.CrossRefGoogle Scholar
Athreya, K. B. and Ney, P. (1972). Branching Processes. Springer, Berlin.CrossRefGoogle Scholar
Athreya, S., Löhr, W. and Winter, A. (2016). The gap between Gromov-vague and Gromov–Hausdorff-vague topology. Stoch. Process. Appl. 126, 25272553.CrossRefGoogle Scholar
Bertoin, J. (1991). Sur la décomposition de la trajectoire d’un processus de Lévy spectralement positif en son infimum. Ann. Inst. H. Poincaré Prob. Statist. 27, 537547.Google Scholar
Bertoin, J. (1993). Splitting at the infimum and excursions in half-lines for random walks and Lévy processes. Stoch. Process. Appl. 47, 1735.CrossRefGoogle Scholar
Bertoin, J. (1996). Lévy Processes. Cambridge University Press.Google Scholar
Bhamidi, S., Dhara, S., van der Hofstad, R. and Sen, S. (2020). Universality for critical heavy-tailed network models: metric structure of maximal components. Electron. J. Prob. 25, article no. 47.CrossRefGoogle Scholar
Bhamidi, S., Dhara, S., van der Hofstad, R. and Sen, S. (2022). Global lower mass-bound for critical configuration models in the heavy-tailed regime. Electron. J. Prob. 27, 129.CrossRefGoogle Scholar
Bollobás, B. (1980). A probabilistic proof of an asymptotic formula for the number of labelled regular graphs. Europ. J. Combinatorics 1, 311316.CrossRefGoogle Scholar
Broutin, N., Duquesne, T. and Wang, M. (2021). Limits of multiplicative inhomogeneous random graphs and Lévy trees: limit theorems. Prob. Theory Relat. Fields 181, 865973.CrossRefGoogle Scholar
Chaumont, L. (1994). Sur certains processus de Lévy conditionnés à rester positifs. Stoch. Stoch. Reports 47, 120.CrossRefGoogle Scholar
Chaumont, L. (1996). Conditionings and path decompositions for Lévy processes. Stoch. Process. Appl. 64, 3954.CrossRefGoogle Scholar
Conchon-Kerjan, G. and Goldschmidt, C. (2023). The stable graph: the metric space scaling limit of a critical random graph with i.i.d. power-law degrees. Ann. Prob. 51, 1–69.Google Scholar
Delmas, J.-F. (2008). Height process for super-critical continuous state branching process. Markov Process. Relat. Fields 14, 309326.Google Scholar
Dhara, S., van der Hofstad, R., van Leeuwaarden, J. S. H. and Sen, S. (2017). Critical window for the configuration model: finite third moment degrees. Electron. J. Prob. 22, article no. 16.CrossRefGoogle Scholar
Dhara, S., van der Hofstad, R., van Leeuwaarden, J. S. H. and Sen, S. (2020). Heavy-tailed configuration models at criticality. Ann. Inst. H. Poincaré Prob. Statist. 56, 15151558.CrossRefGoogle Scholar
Donderwinkel, S. and Xie, Z. (2021). Universality for the directed configuration model with random degrees: metric space convergence of the strongly connected components at criticality. Preprint. Available at Scholar
Duquesne, T. (2009). Continuum random trees and branching processes with immigration. Stoch. Process. Appl. 119, 99129.CrossRefGoogle Scholar
Duquesne, T. and Le Gall, J.-F. (2005). Probabilistic and fractal aspects of Lévy trees. Prob. Theory Relat. Fields 131, 553603.CrossRefGoogle Scholar
Duquesne, T. and Le Gall, J.-F. (2002). Random Trees, Lévy Processes and Spatial Branching Processes (Astérisque 281). Société Mathématique de France, Paris.Google Scholar
Duquesne, T. and Winkel, M. (2007). Growth of Lévy trees. Prob. Theory Relat. Fields 139, 313371.CrossRefGoogle Scholar
Duquesne, T. and Winkel, M. (2019). Hereditary tree growth and Lévy forests. Stoch. Process. Appl. 129, 36903747.CrossRefGoogle Scholar
Durrett, R. (2010). Probability: Theory and Examples. Cambridge University Press.CrossRefGoogle Scholar
Dwass, M. (1975). Branching processes in simple random walk. Proc. Amer. Math. Soc. 51, 270274.CrossRefGoogle Scholar
Ethier, S. N. and Kurtz, T. G. (1986). Markov Processes: Characterization and Convergence. Wiley.CrossRefGoogle Scholar
Grey, D. R. (1974). Asymptotic behaviour of continuous time, continuous state-space branching processes. J. Appl. Prob. 11, 669677.CrossRefGoogle Scholar
Harris, T. E. (1948). Branching processes. Ann. Math. Statist. 19, 474494.CrossRefGoogle Scholar
He, H. and Luan, N. (2013). A note on the scaling limits of contour functions of Galton–Watson trees. Electron. Commun. Prob. 18, 13 pp.CrossRefGoogle Scholar
Jacod, J. and Shiryaev, A. N. (2003). Limit Theorems for Stochastic Processes, 2nd edn. Springer, Berlin.CrossRefGoogle Scholar
Janson, S. (2009). On percolation in random graphs with given vertex degrees. Electron. J. Prob. 14, 86118.CrossRefGoogle Scholar
Janson, S. (2009). The probability that a random multigraph is simple. Combinatorics Prob. Comput. 18, 205225.CrossRefGoogle Scholar
Janson, S. (2012). Simply generated trees, conditioned Galton–Watson trees, random allocations and condensation. Prob. Surveys 9, 103252.CrossRefGoogle Scholar
Janson, S. and Łuczak, M. J. (2009). A new approach to the giant component problem. Random Structures Algorithms 34, 197216.CrossRefGoogle Scholar
Joseph, A. (2014). The component sizes of a critical random graph with given degree sequence. Ann. Appl. Prob. 24, 25602594.CrossRefGoogle Scholar
Kallenberg, O. (2002). Foundations of Modern Probability. Springer, Cham.CrossRefGoogle Scholar
Kawazu, K. and Watanabe, S. (1971). Branching processes with immigration and related limit theorems. Theory Prob. Appl. 16, 3654.CrossRefGoogle Scholar
Lambert, A. (2002). The genealogy of continuous-state branching processes with immigration. Prob. Theory Relat. Fields 122, 4270.CrossRefGoogle Scholar
Le Gall, J.-F. (1991). Brownian excursions, trees and measure-valued branching processes. Ann. Prob. 19, 13991439.Google Scholar
Le Gall, J.-F. and Le Jan, Y. (1998). Branching processes in Lévy processes: the exploration process. Ann. Prob. 26, 213252.Google Scholar
Lyons, R. and Peres, Y. (2017). Probability on Trees and Networks. Cambridge University Press.Google Scholar
Millar, P. W. (1977). Zero–one laws and the minimum of a Markov process. Trans. Amer. Math. Soc. 226, 365391.CrossRefGoogle Scholar
Molloy, M. and Reed, B. (1995). A critical point for random graphs with a given degree sequence. Random Structures Algorithms 6, 161180.CrossRefGoogle Scholar
Molloy, M. and Reed, B. (1998). The size of the giant component of a random graph with a given degree sequence. Combinatorics Prob. Comput. 7, 295305.CrossRefGoogle Scholar
Neveu, J. and Pitman, J. W. (1989). The branching process in a Brownian excursion. In Séminaire de Probabilités XXIII, eds Azéma, J., Yor, M. and Meyer, P. A., Springer, Berlin, Heidelberg, pp. 248–257.CrossRefGoogle Scholar
Riordan, O. (2012). The phase transition in the configuration model. Combinatorics Prob. Comput. 21, 265299.CrossRefGoogle Scholar
Rogers, L. C. G. (1984). Brownian local times and branching processes. In Séminaire de Probabilités XVIII 1982/83, eds Azéma, J. and Yor, M., Springer, Berlin, Heidelberg, pp. 42–55.CrossRefGoogle Scholar
Van der Hofstad, R. (2017). Random Graphs and Complex Networks. Cambridge University Press.Google Scholar