Skip to main content Accessibility help
×
Home
Hostname: page-component-747cfc64b6-fkkrz Total loading time: 0.376 Render date: 2021-06-17T07:07:25.014Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Coagulation and universal scaling limits for critical Galton–Watson processes

Published online by Cambridge University Press:  26 July 2018

Gautam Iyer
Affiliation:
Carnegie Mellon University
Nicholas Leger
Affiliation:
University of Houston
Robert L. Pego
Affiliation:
Carnegie Mellon University
Corresponding

Abstract

The basis of this paper is the elementary observation that the n-step descendant distribution of any Galton–Watson process satisfies a discrete Smoluchowski coagulation equation with multiple coalescence. Using this we obtain simple necessary and sufficient criteria for the convergence of scaling limits of critical Galton–Watson processes in terms of scaled family-size distributions and a natural notion of convergence of Lévy triples. Our results provide a clear and natural interpretation, and an alternate proof, of the fact that the Lévy jump measure of certain continuous-state branching processes (CSBPs) satisfies a generalized Smoluchowski equation. (This result was previously proved by Bertoin and Le Gall (2006).) Our analysis shows that the nonlinear scaling dynamics of CSBPs become linear and purely dilatational when expressed in terms of the Lévy triple associated with the branching mechanism. We prove a continuity theorem for CSBPs in terms of the associated Lévy triples, and use our scaling analysis to prove the existence of universal critical Galton–Watson processes and CSBPs analogous to Doeblin's `universal laws'. Namely, these universal processes generate all possible critical and subcritical CSBPs as subsequential scaling limits. Our convergence results rely on a natural topology for Lévy triples and a continuity theorem for Bernstein transforms (Laplace exponents) which we develop in a self-contained appendix.

Type
Original Article
Copyright
Copyright © Applied Probability Trust 2018 

Access options

Get access to the full version of this content by using one of the access options below.

References

[1]Aldous, D. J. (1999). Deterministic and stochastic models for coalescence (aggregation and coagulation): a review of the mean-field theory for probabilists. Bernoulli 5, 348. CrossRefGoogle Scholar
[2]Athreya, K. B. and Ney, P. E. (2004). Branching Processes. Dover, Mineola, NY. Google Scholar
[3]Bacaër, N. (2011). A Short History of Mathematical Population Dynamics. Springer, London. CrossRefGoogle Scholar
[4]Bansaye, V. and Simatos, F. (2015). On the scaling limits of Galton-Watson processes in varying environments. Electron. J. Prob. 20, 75. CrossRefGoogle Scholar
[5]Berestycki, N. (2009). Recent Progress in Coalescent Theory (Math. Surveys 16). Sociedade Brasileira de Matemática, Rio de Janeiro. Google Scholar
[6]Berestycki, J., Berestycki, N. and Limic, V. (2014). A small-time coupling between λ-coalescents and branching processes. Ann. Appl. Prob. 24, 449475. CrossRefGoogle Scholar
[7]Berestycki, J., Berestycki, N. and Schweinsberg, J. (2008). Small-time behavior of beta coalescents. Ann. Inst. H. Poincaré Prob. Statist. 44, 214238. CrossRefGoogle Scholar
[8]Bertoin, J. (2000). Subordinators, Lévy processes with no negative jumps, and branching processes. Preprint. Université Pierre et Marie Curie. Google Scholar
[9]Bertoin, J. (2006). Random Fragmentation and Coagulation Processes (Camb. Studies Adv. Math. 102). Cambridge University Press. CrossRefGoogle Scholar
[10]Bertoin, J. and Le Gall, J.-F. (2000). The Bolthausen-Sznitman coalescent and the genealogy of continuous-state branching processes. Prob. Theory Relat. Fields 117, 249266. Google Scholar
[11]Bertoin, J. and Le Gall, J.-F. (2003). Stochastic flows associated to coalescent processes. Prob. Theory Relat. Fields 126, 261288. CrossRefGoogle Scholar
[12]Bertoin, J. and Le Gall, J.-F. (2005). Stochastic flows associated to coalescent processes. II. Stochastic differential equations. Ann. Inst. H. Poincaré Prob. Statist. 41, 307333. CrossRefGoogle Scholar
[13]Bertoin, J. and Le Gall, J.-F. (2006). Stochastic flows associated to coalescent processes. III. Limit theorems. Illinois J. Math. 50, 147181. Google Scholar
[14]Birkner, M.et al. (2005). Alpha-stable branching and beta-coalescents. Electron. J. Prob. 10, 303325. CrossRefGoogle Scholar
[15]Caballero, M. E., Lambert, A. and Uribe Bravo, G. (2009). Proof(s) of the Lamperti representation of continuous-state branching processes. Prob. Surveys 6, 6289. CrossRefGoogle Scholar
[16]Feller, W. (1971). An Introduction to Probability Theory and Its Applications, Vol. II, 2nd edn. John Wiley, New York. Google Scholar
[17]Gnedin, A., Iksanov, A. and Marynych, A. (2014). λ-coalescents: a survey. In Celebrating 50 Years of The Applied Probability Trust (J. Appl. Prob. 51A), pp. 2340. Google Scholar
[18]Grey, D. R. (1974). Asymptotic behaviour of continuous time, continuous state-space branching processes. J. Appl. Prob. 11, 669677. CrossRefGoogle Scholar
[19]Grimvall, A. (1974). On the convergence of sequences of branching processes. Ann. Prob. 2, 10271045. CrossRefGoogle Scholar
[20]Grosjean, N. and Huillet, T. (2016). On a coalescence process and its branching genealogy. J. Appl. Prob. 53, 11561165. CrossRefGoogle Scholar
[21]Heyde, C. C. and Seneta, E. (1977). I. J. Bienaymé: Statistical Theory Anticipated. Springer, New York. CrossRefGoogle Scholar
[22]Iyer, G., Leger, N. and Pego, R. L. (2015). Limit theorems for Smoluchowski dynamics associated with critical continuous-state branching processes. Ann. Appl. Prob. 25, 675713. CrossRefGoogle Scholar
[23]Kingman, J. F. C. (1982). The coalescent. Stoch. Process. Appl. 13, 235248. CrossRefGoogle Scholar
[24]Kingman, J. F. C. (1982). On the genealogy of large populations. In Essays in Statistical Science (J. Appl. Prob. 19A), pp. 2743. Google Scholar
[25]Kyprianou, A. E. (2014). Fluctuations of Lévy Processes with Applications, 2nd edn. Springer, Heidelberg. CrossRefGoogle Scholar
[26]Lambert, A. (2003). Coalescence times for the branching process. Adv. Appl. Prob. 35, 10711089. CrossRefGoogle Scholar
[27]Lambert, A. (2007). Quasi-stationary distributions and the continuous-state branching process conditioned to be never extinct. Electron. J. Prob. 12, 420446. CrossRefGoogle Scholar
[28]Lamperti, J. (1967). Continuous state branching processes. Bull. Amer. Math. Soc. 73, 382386. CrossRefGoogle Scholar
[29]Lamperti, J. (1967). The limit of a sequence of branching processes. Z. Wahrscheinlichkeitsth. 7, 271288. CrossRefGoogle Scholar
[30]Laurençot, P. and van Roessel, H. (2015). Absence of gelation and self-similar behavior for a coagulation-fragmentation equation. SIAM J. Math. Anal. 47, 23552374. CrossRefGoogle Scholar
[31]Li, Z.-H. (2000). Asymptotic behaviour of continuous time and state branching processes. J. Austral. Math. Soc. Ser. A 68, 6884. CrossRefGoogle Scholar
[32]Menon, G. and Pego, R. L. (2004). Approach to self-similarity in Smoluchowski's coagulation equations. Commun. Pure Appl. Math. 57, 11971232. CrossRefGoogle Scholar
[33]Menon, G. and Pego, R. L. (2008). The scaling attractor and ultimate dynamics for Smoluchowski's coagulation equations. J. Nonlinear Sci. 18, 143190. CrossRefGoogle Scholar
[34]Pakes, A. G. (2008). Conditional limit theorems for continuous time and state branching process. In Records and Branching Processes, Nova, New York, pp. 63103. Google Scholar
[35]Pakes, A. G. (2010). Critical Markov branching process limit theorems allowing infinite variance. Adv. Appl. Prob. 42, 460488. CrossRefGoogle Scholar
[36]Pitman, J. (1999). Coalescents with multiple collisions. Ann. Prob. 27, 18701902. CrossRefGoogle Scholar
[37]Sagitov, S. (1999). The general coalescent with asynchronous mergers of ancestral lines. J. Appl. Prob. 36, 11161125. CrossRefGoogle Scholar
[38]Schilling, R. L., Song, R. and Vondraček, Z. (2010). Bernstein Functions (De Gruyter Studies Math. 37). De Gruyter, Berlin. Google Scholar
[39]Schweinsberg, J. (2003). Coalescent processes obtained from supercritical Galton-Watson processes. Stoch. Process. Appl. 106, 107139. CrossRefGoogle Scholar
[40]Vatutin, V. A. and Zubkov, A. M. (1985). Branching processes. I. In Probability Theory: Mathematical Statistics: Theoretical Cybernetics, Akad. Nauk SSSR, Moscow, pp. 367. Google Scholar
[41]Vatutin, V. A. and Zubkov, A. M. (1993). Branching processes. II. J. Soviet Math. 67, 34073485. CrossRefGoogle Scholar
[42]Von Smoluchowski, M. (1916). Drei Vorträge über Diffusion, Brownsche Bewegung und Koagulation von Kolloidteilchen. Physik. Z. 17, 557585. Google Scholar
[43]Von Smoluchowski, M. (1918). Experiments on a mathematical theory of kinetic coagulation of coloid solutions. Z. Physikalische Chem. Stoch. Verwandtschaftslehre 92, 129168. Google Scholar
[44]Watson, H. W. and Galton, F. (1875). On the probability of the extinction of families. J. Anthropological Inst. Great Britain Ireland 4, 138144. CrossRefGoogle Scholar
1
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Coagulation and universal scaling limits for critical Galton–Watson processes
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Coagulation and universal scaling limits for critical Galton–Watson processes
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Coagulation and universal scaling limits for critical Galton–Watson processes
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *