Skip to main content Accessibility help
×
Home
Hostname: page-component-564cf476b6-qp9dn Total loading time: 0.239 Render date: 2021-06-20T08:32:09.811Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Branching processes in generalized autoregressive conditional environments

Published online by Cambridge University Press:  11 January 2017

Irene Hueter
Affiliation:
Columbia University
Corresponding
E-mail address:

Abstract

Branching processes in random environments have been widely studied and applied to population growth systems to model the spread of epidemics, infectious diseases, cancerous tumor growth, and social network traffic. However, Ebola virus, tuberculosis infections, and avian flu grow or change at rates that vary with time—at peak rates during pandemic time periods, while at low rates when near extinction. The branching processes in generalized autoregressive conditional environments we propose provide a novel approach to branching processes that allows for such time-varying random environments and instances of peak growth and near extinction-type rates. Offspring distributions we consider to illustrate the model include the generalized Poisson, binomial, and negative binomial integer-valued GARCH models. We establish conditions on the environmental process that guarantee stationarity and ergodicity of the mean offspring number and environmental processes and provide equations from which their variances, autocorrelation, and cross-correlation functions can be deduced. Furthermore, we present results on fundamental questions of importance to these processes—the survival-extinction dichotomy, growth behavior, necessary and sufficient conditions for noncertain extinction, characterization of the phase transition between the subcritical and supercritical regimes, and survival behavior in each phase and at criticality.

Type
Research Article
Copyright
Copyright © Applied Probability Trust 2017 

Access options

Get access to the full version of this content by using one of the access options below.

References

[1] Athreya, K. B. and Karlin, S. (1971). On branching processes with random environments. I. Extinction probabilities. Ann. Math. Statist. 42, 14991520. CrossRefGoogle Scholar
[2] Athreya, K. B. and Karlin, S. (1971). Branching processes with random environments. II. Limit theorems. Ann. Math. Statist. 42, 18431858. CrossRefGoogle Scholar
[3] Athreya, K. B. and Ney, P. E. (2004). Branching Processes, Dover, Mineola, NY. Google Scholar
[4] Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. J. Econometrics 31, 307327.CrossRefGoogle Scholar
[5] Coffey, J. and Tanny, D. (1984). A necessary and sufficient condition for noncertain extinction of a branching process in a random environment (BPRE). Stoch. Proc. Appl. 16, 189197.CrossRefGoogle Scholar
[6] Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50, 9871007.CrossRefGoogle Scholar
[7] Ferland, R. Latour, A. and Oraichi, D. (2006). Integer-valued GARCH process. J. Time Series Anal. 27, 923942.CrossRefGoogle Scholar
[8] Harris, T. E. (1963). The Theory of Branching Processes. Springer, Berlin.CrossRefGoogle Scholar
[9] Heinen, A. (2001). Modeling time series count data: the autoregressive conditional poisson model. Doctoral Thesis, Department of Economics, University of California, San Diego.Google Scholar
[10] Heyde, C. C. (1970). Extension of a result of Seneta for the super-critical Galton–Watson process. Ann. Math. Statist. 41, 739742.CrossRefGoogle Scholar
[11] Hueter, I. (2014). Interventions in GARCE branching processes. Preprint.Google Scholar
[12] Kesten, H. and Stigum, B. P. (1966). A limit theorem for multidimensional Galton–Watson processes. Ann. Math. Statist. 37, 12111223.CrossRefGoogle Scholar
[13] Levinson, N. (1959). Limiting theorems for Galton–Watson branching process. Illinois. J. Math. 3, 554565.Google Scholar
[14] Liggett, T. M. (1999). Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Springer, Berlin.CrossRefGoogle Scholar
[15] Lyons, R., Pemantle, R. and Peres, Y. (1995). Conceptual proofs of \italic{L} log \italic{L} criteria for mean behavior of branching processes. Ann. Prob. 23, 11251138.CrossRefGoogle Scholar
[16] Neumann, M. H. (2011). Absolute regularity and ergodicity of Poisson count processes. Bernoulli 17, 12681284.CrossRefGoogle Scholar
[17] Rechavi, O. et al. (2014). Starvation-induced transgenerational inheritance of small RNAs in c. elegans. . Cell 158, 277287.CrossRefGoogle ScholarPubMed
[18] Seneta, E. (1968). On recent theorems concerning the supercritical Galton–Watson process. Ann. Math. Statist. 39, 20982102.CrossRefGoogle Scholar
[19] Seneta, E. (1975). Normed-convergence theory for supercritical branching processes. Stoch. Proc. Appl. 3, 3543.CrossRefGoogle Scholar
[20] Skinner, M. K. (2014). A new kind of inheritance. Scientific American 311, 4451.CrossRefGoogle Scholar
[21] Smith, W. L. (1968). Necessary conditions for almost sure extinction of a branching process with random environment. Ann. Math. Statist. 39, 21362140.CrossRefGoogle Scholar
[22] Smith, W. L. and Wilkinson, W. E. (1969). On branching processes in random environments. Ann. Math. Statist. 40, 814827.CrossRefGoogle Scholar
[23] Smith, W. L. and Wilkinson, W. E. (1971). Branching processes in Markovian environments. Duke Math. J. 38, 749763.CrossRefGoogle Scholar
[24] Tanny, D. (1977). Limit theorems for branching processes in a random environment. Ann. Prob. 5, 100116.CrossRefGoogle Scholar
[25] Tanny, D. (1978). Normalizing constants for branching processes in random environments (B.P.R.E.). Stoch. Proc. Appl. 6, 201211.CrossRefGoogle Scholar
[26] Tanny, D. (1988). A necessary and sufficient condition for a branching process in a random environment to grow like the product of its means. Stoch. Proc. Appl. 28, 123139.CrossRefGoogle Scholar
[27] Weiss, C. H. (2009). Modelling time series of counts with overdispersion. Statist. Meth. Appl. 18, 507519.CrossRefGoogle Scholar
[28] Wilkinson, E. E. (1969). On calculating extinction probabilities for branching processes in random environments. J. Appl. Prob. 6, 478492.CrossRefGoogle Scholar
[29] Zhu, F. (2011). A negative binomial integer-valued GARCH model. J. Time Series Anal. 32, 5467.CrossRefGoogle Scholar
[30] Zhu, F. (2012). Modeling overdispersed or underdispersed count data with generalized Poisson integer-valued GARCH models. J. Math. Anal. Appl. 389, 5871.CrossRefGoogle Scholar
[31] Zhu, F. (2012). Zero-inflated Poisson and negative binomial integer-valued GARCH models. J. Statist. Planning Infer. 142, 826839.CrossRefGoogle Scholar
1
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Branching processes in generalized autoregressive conditional environments
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Branching processes in generalized autoregressive conditional environments
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Branching processes in generalized autoregressive conditional environments
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *