Skip to main content Accessibility help
×
Home
Hostname: page-component-888d5979f-67m56 Total loading time: 0.344 Render date: 2021-10-26T16:37:34.769Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Steady States of Sheared Active Nematics

Published online by Cambridge University Press:  03 June 2015

Zhenlu Cui*
Affiliation:
The Department of Mathematics and Computer Science, The Center for Defense and Homeland Security, Fayetteville State University, Fayetteville, NC 28301, USA
Xiaoming Zeng
Affiliation:
School of Mathematical Sciences, Xiamen University, Xiamen 361005, Fujian, China
Jianbing Su
Affiliation:
School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
*
*Corresponding author. Email: zcui@uncfsu.edu
Get access

Abstract

A continuum hydrodynamic model has been used to characterize flowing active nematics. The behavior of such a system subjected to a weak steady shear is analyzed. We explore the director structures and flow behaviors of the system in flow-aligning and flow tumbling regimes. Combining asymptotic analysis and numerical simulations, we extend previous studies to give a complete characterization of the steady states for both contractile and extensile particles in flow-aligning and flow-tumbling regimes. Another key prediction of this work is the role of the system size on the steady states of an active nematic system: if the system size is small, the velocity and the director angle files for both flow-tumbling contractile and extensile systems are similar to those of passive nematics; if the system is big, the velocity and the director angle files for flow-aligning contractile systems and tumbling extensile systems are akin to sheared passive cholesterics while they are oscillatory for flow-aligning extensile and tumbling contractile systems.

Type
Research Article
Copyright
Copyright © Global-Science Press 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Beris, A. N. AND Edwards, B. J., Thermodynamics of Flowing Systems, Oxford University Press, Oxford, 1994.Google Scholar
[2]Chakrabarty, B., Das, m., Dasgupta, C., Ramaswamy, S. and Sood, A. K., Spatiotemporal rheochaos in nematic hydrodynamics, Phys. Rev. Lett., 92 (2004), 055501.Google Scholar
[3]Cui, Zhenlu and Zeng, Xiaoming, Rheology of sheared bacterial suspensions, The IMA Volume in Mathematics and Its Applications, 155 (2012), pp. 217224.CrossRefGoogle Scholar
[4]Cui, Zhenlu, Weakly sheared active suspensions: hydrodynamics, stability and rheology, Phys. Rev. E, 83 (2011), 031911.CrossRefGoogle ScholarPubMed
[5]Cui, Z., Calderer, M. C. and Wang, Q., A kinetic theory for flows of cholesteric liquid crystal polymers, Discrete and Continuous Dynamical Systems-Series B, 6 (2006), pp. 291310.Google Scholar
[6]Dombrowski, C. et al., Self-concentration and large-scale coherence in bacterial dynamics, Phys. Rev. Lett., 93 (2004), pp. 098103098106.CrossRefGoogle ScholarPubMed
[7]Dreyfus, R., Baudry, J., Roper, M. L., Stone, H. A., Fermigier, M. and Bibette, J., Microscopic artificial swimmers, Nature (London), 437 (2005), 862.CrossRefGoogle ScholarPubMed
[8]Edwards, S. A. and Yeomans, J. M., Spontaneous flow states in active nematics: a unified picture, Europhys. Lett., 85 (2009), 18008CrossRefGoogle Scholar
[9]Giomi, L., Marchetti, M. C. and Liverpool, T. B., Complex spontaneous flows and concentration banding in active polar films, Phys. Rev. Lett., 101 (2008), 198101.CrossRefGoogle ScholarPubMed
[10]Kaiser, D., Bacterial swarming: a re-examination of cell-movement patterns, Current Biology, 17 (2007), R561.CrossRefGoogle ScholarPubMed
[11]Kim, M. J. et al., Use of bacterial carpets to enhance mixing in microfluidic systems, J. Fluids Eng., 129 (2007), pp. 319324.CrossRefGoogle Scholar
[12]Kruse, K. et al., Asters, vortices, and rotating spirals in active gels of polar filaments, Phys. Rev. Lett., 92 (2004), pp. 078101078104.CrossRefGoogle ScholarPubMed
[13]Liverpool, T. B. and Marchetti, M. C., Rheology of active filament solutions, Phys. Rev. Lett., 97 (2006), 268101.CrossRefGoogle ScholarPubMed
[14]Marenduzzo, D., Orlandini, E. AND Yeomans, J. M., Hydrodynamics and rheology of active liquid crystals: a numerical investigation, Phys. Rev. Lett., 98 (2007), 118102.CrossRefGoogle ScholarPubMed
[15]Marenduzzo, D. et al., Steady-state hydrodynamic instabilities of active liquid crystals: hybrid lattice Boltzmann simulations, Phys. Rev. E, 76 (2007), 031921.CrossRefGoogle ScholarPubMed
[16]Olmsted, P. D., Perspectives on shear banding in complex fluids, Rheol. Acta, 47 (2008) 283.CrossRefGoogle Scholar
[17]Voituriez, R., Joanny, J. F. and Prost, J., Spontaneous flow transition in active polar gels, Europhys. Lett., 70 (2005), pp. 404410.CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Steady States of Sheared Active Nematics
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Steady States of Sheared Active Nematics
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Steady States of Sheared Active Nematics
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *