Skip to main content Accessibility help
×
Home
Hostname: page-component-5959bf8d4d-km8cc Total loading time: 0.209 Render date: 2022-12-08T19:24:55.252Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

The a Posteriori Error Estimates for Chebyshev-Galerkin Spectral Methods in One Dimension

Published online by Cambridge University Press:  23 March 2015

Jianwei Zhou*
Affiliation:
Department of Mathematics, Linyi University, Shandong 276005, China
*
*Corresponding author. Email: jwzhou@yahoo.com (J. W. Zhou)
Get access

Abstract

In this paper, the Chebyshev-Galerkin spectral approximations are employed to investigate Poisson equations and the fourth order equations in one dimension. Meanwhile, p-version finite element methods with Chebyshev polynomials are utilized to solve Poisson equations. The efficient and reliable a posteriori error estimators are given for different models. Furthermore, the a priori error estimators are derived independently. Some numerical experiments are performed to verify the theoretical analysis for the a posteriori error indicators and a priori error estimations.

Type
Research Article
Copyright
Copyright © Global-Science Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Adams, R. A., Sobolev Spaces, Academic Press, 1978.Google Scholar
[2]Ainsworth, M. and Oden, J. T., A posteriori error estimators in finite element analysis, Comput. Methods Appl. Mech. Eng., 142 (1997), pp. 8888.CrossRefGoogle Scholar
[3]Babuška, I. and Suri, M., The optimal covergence rate of the p-version of the finite element method, SIAM J. Numer. Anal., 24 (1987), pp. 776776.CrossRefGoogle Scholar
[4]Bernardi, C., Indicateurs d’erreur en h-N version des element spaectraux, M2AN, 30(1996), pp. 3838.CrossRefGoogle Scholar
[5]Bernardi, C. and Maday, Y., Spectral methods, in Handbook of Numerical Analysis, Ciarlet, P. G. and Lions, J.-L., eds., Elsevier, Amsterdam, 1997, pp. 486486.Google Scholar
[6]Bium, H. and Rannacher, R., On mixed finite element methods in plate beding analysis, Comput. Mech., 6 (1990), pp. 236236.Google Scholar
[7]Brenner, S. C. and Scott, L. R., The Mathematical Theory of Finite Element Methods, Springer, New York, 1994.CrossRefGoogle Scholar
[8]Canuto, C., Hussaini, M. Y., Quarteroni, A. and Zang, T. A., Spectral Methods in Fluid Dynamics, Springer-Verlag, 1987.Google Scholar
[9]Charbonneau, A., Dossou, K., and Pierre, R., A residual-based a posteriori error estimator for the Ciarlet-Raviart formulation of the first Biharmonic problem, Numerical Methods for Partial Differential Equations, 13 (1997), pp. 93111.3.0.CO;2-H>CrossRefGoogle Scholar
[10]Cheng, X. L., Han, W. M. and Huang, H. C.,, Some mixed finite element methods for biharmonic equation, J. Comput. Appl. Math., 126 (2000), pp. 91109.CrossRefGoogle Scholar
[11]Ciarlet, P. G., The Finite Element Methods for Elliptic Problems, North-Holland Publishing Company, Amsterdam, 1978.Google Scholar
[12]Evans, LAWRENCE C., Partial Differential Equations, Graduate Studies in Mathematics, 19 (1997).Google Scholar
[13]Gui, C. and Babuška, I., The h, p and h-p versions of the finite element method in 1 dimension, Part 1: the error analysis of the p-version; Part 2: The error analysis of the h- and h-p version; Part 3: The adaptive h-p version, Numer. Math., 49 (1986), pp. 577683.CrossRefGoogle Scholar
[14]Guo, B. Q., Recent progress in a-posteriori error estimation for the p-version of finite element method, Recent Advances in Adaptive, eds. Shi, Z-C., Chen, Z., Tang, T. and Yu, D., AMS, Comtemporary Mathematics, 383 (2005), pp. 4761.CrossRefGoogle Scholar
[15]Gottlieb, D. and Orszag, S. A., Numerical Analysis of Spectral Methods: Theory and Applications, SIAM-CBMS, Philadelphia, 1977.CrossRefGoogle Scholar
[16]Maday, Y., Analysis of spectral projectors in one-dimensional domains, Math. Comput., 55 (1990), pp. 537562.CrossRefGoogle Scholar
[17]Melenk, M. and Wohlmuth, B., On residual-based a posteriori error estimation in hp-FEM, Adv. Comput. Math., 15 (2001), pp. 311331.CrossRefGoogle Scholar
[18]Monk, P., A mixed finite element method for the biharmonic equation, SIAM J. Numer. Anal., 24 (1987), pp. 737749.CrossRefGoogle Scholar
[19]Oden, T., Demokowicz, L., Rachowicz, W. and Westermann, T. A., Towards a unversal hp-adaptive finite element method, II. a posteriori error estimation, Comput. Meth. Appl. Mech. Eng., 77 (1984), pp. 113180.CrossRefGoogle Scholar
[20]Shen, J., Efficient Spectral-Galerkin method II. direct solvers of the second and fourth order equations by using Chebyshev polynomials, SIAM J. Sci. Comput., 16 (1995), pp. 7487.CrossRefGoogle Scholar
[21]Shen, J. and Wang, L. L., Spectral approximation of the Helmholtz equation with high wave numbers, SIAM J. Numer. Anal., 43 (2005), pp. 623644.CrossRefGoogle Scholar
[22]Scott, L. R. and Zhang, S., Finite element interpolation of nonsmooth functions satisfying boundary condition, Math. Comput., 54 (1990), pp. 483493.CrossRefGoogle Scholar
[23]Xiang, X. M., Numerical Analysis of Spectral Methods, Science Press, Beijing, 2000.Google Scholar
[24]Zhou, J. W. and Yang, D. P., An improved a posteriori error estimate for the Galerkin spectral method in one dimension, Comput. Math. Appl., 61 (2011), pp. 334340.CrossRefGoogle Scholar
[25]Zhou, J. W. and Yang, D. P., Spectral mixed Galerkin method for state constrained optimal control problem governed by the first bi-harmonic equation, Int. J. Comput. Math., 88 (2011), pp. 29883011.CrossRefGoogle Scholar
1
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The a Posteriori Error Estimates for Chebyshev-Galerkin Spectral Methods in One Dimension
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

The a Posteriori Error Estimates for Chebyshev-Galerkin Spectral Methods in One Dimension
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

The a Posteriori Error Estimates for Chebyshev-Galerkin Spectral Methods in One Dimension
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *